
漢德百科全書 | 汉德百科全书
科学技术


航空航天
*意大利航天局


航空航天
*巴西航天局


航空航天
*法国国家太空研究中心


航空航天
*中国国家航天局


航空航天
*德国航空航天中心


航空航天
*欧洲航天局


航空航天
*印度空间研究组织


航空航天
*日本宇宙航空研究开发机构


航空航天
*韩国航空宇宙研究院


航空航天
*美国国家航空航天局


航空航天
*俄罗斯联邦航天局
科学技术

Sir Timothy John Berners-Lee, OM, KBE, FRS, FRSA (* 8. Juni 1955 in London) ist ein britischer Physiker und Informatiker. Er ist der Entwickler der Hypertext Markup Language (HTML) und der Begründer des World Wide Web. Heute steht er dem World Wide Web Consortium (W3C) vor, ist Professor am Massachusetts Institute of Technology (MIT) und hat seit 2016 einen Lehrstuhl an der Universität Oxford.
蒂莫西·约翰·伯纳斯-李爵士,OM KBE FRS FREng FRSA FBCS(英语:Sir Timothy John Berners-Lee,1955年6月8日—)[1],昵称为蒂姆·伯纳斯-李(英语:Tim Berners-Lee),英国计算机科学家。他是万维网的发明者,创办了世界上第一个网站和第一个网页浏览器,让普通用户能够访问和浏览网页。1990年12月25日,他成功利用互联网实现了超文本传输协议客户端与服务器的第一次通讯[2][3][4]。

Telstar是第一颗人造的通讯卫星和第一颗被设计来传送电话和高速数据通讯的卫星。今天多颗电视广播卫星取名为Telstar。最早的Telstar则是两颗几乎一样的试验性卫星:Telstar1于1962年7月10日升天,运行到1963年2月21日,Telstar2于1963年5月7日升天,运行到1965年5月16日。在其运行期间Telstar1首次通过太空转播了电视图像、电话和电传图像,完成了首次跨大西洋电视实播。最初的Telstar属于美国电话电报公司,是该公司、贝尔实验室、美国国家航空航天局、英国邮政总局和法国电信之间的一项国际协议的一部分,该协议的目标在于开发试验性跨大西洋卫星通讯。贝尔实验室与美国国家航空航天局之间达成协议不论发射成功与否贝尔实验室为每次发射交付三百万美元。美国方面的地面基地位于缅因州安德沃,由贝尔实验室建造。英国的主站是位于英格兰西南的贡希利卫星信号地面接收站,主要由英国广播公司使用。国际协调中心和由英国广播公司开发研制的转换装置位于伦敦英国广播公司电视中心。法国的地面接收站位于法国西北(坐标:
48°47′10″N 3°31′26″W)。
Ein Computer [kɔmˈpjuːtɐ] ist ein Gerät, das mittels programmierbarer Rechenvorschriften Daten verarbeitet.
Charles Babbage und Ada Lovelace gelten durch die von Babbage 1837 entworfene Rechenmaschine Analytical Engine als Vordenker des modernen universell programmierbaren Computers, während Konrad Zuse (Z3, 1941 und Z4, 1945), John Presper Eckert und John William Mauchly (ENIAC, 1946) die ersten Geräte dieser Art bauten. Bei der Klassifizierung eines Geräts als universell programmierbarer Computer spielt die Turing-Vollständigkeit eine wesentliche Rolle, benannt nach dem englischen Mathematiker Alan Turing, der 1936 das logische Modell der Turingmaschine eingeführt hat.[1][2]
Die frühen Computer wurden auch (Groß-)Rechner genannt; deren Ein- und Ausgabe war zunächst auf die Verarbeitung von Zahlen beschränkt. Zwar verstehen sich moderne Computer auf den Umgang mit weiteren Daten, wie beispielsweise Buchstaben und Töne. Diese Daten werden jedoch innerhalb des Computers ebenfalls in Zahlen umgewandelt und als Zahlen verarbeitet, weshalb ein Computer auch heute noch eine Rechenmaschine ist.
Mit zunehmender Leistungsfähigkeit eröffneten sich neue Einsatzbereiche. Computer sind heute in allen Bereichen des täglichen Lebens vorzufinden, meistens in spezialisierten Varianten, die auf einen vorliegenden Anwendungszweck zugeschnitten sind. So dienen integrierte Kleinstcomputer (eingebettetes System) zur Steuerung von Alltagsgeräten wie Waschmaschinen, Videorekorder oder zur Münzprüfung in Warenautomaten; in modernen Automobilen dienen sie beispielsweise zur Anzeige von Fahrdaten und übernehmen in „Fahrassistenten“ diverse Manöver selbst.
Universell programmierbare Computer finden sich in Smartphones und Spielkonsolen. Personal Computer dienen der Informationsverarbeitung in Wirtschaft und Behörden sowie bei Privatpersonen; Supercomputer werden eingesetzt, um komplexe Vorgänge zu simulieren, z. B. in der Klimaforschung oder für medizinische Berechnungen.

Unter elektromagnetischer Induktion (auch Faradaysche Induktion, nach Michael Faraday, kurz Induktion) versteht man das Entstehen eines elektrischen Feldes bei einer Änderung des magnetischen Flusses.
In vielen Fällen lässt sich das elektrische Feld durch Messung einer elektrischen Spannung mit einer Spule direkt nachweisen. Ein typisches Beispiel hierfür zeigt das nebenstehende Bild: Durch die Bewegung des Magneten wird eine elektrische Spannung induziert, die an den Klemmen der Spule messbar ist und für weitere Anwendungen bereitsteht.
电磁感应(英语:Electromagnetic induction),是指放在变化磁通量中的导体,会产生电动势。此电动势称为感应电动势或感生电动势,若将此导体闭合成一回路,则该电动势会驱使电子流动,形成感应电流(感生电流)。

Die klassische Elektrodynamik (auch Elektrizitätslehre) ist das Teilgebiet der Physik, das sich mit bewegten elektrischen Ladungen und mit zeitlich veränderlichen elektrischen und magnetischen Feldern beschäftigt. Die Elektrostatik als Spezialfall der Elektrodynamik beschäftigt sich mit ruhenden elektrischen Ladungen und ihren Feldern. Die zugrundeliegende Grundkraft der Physik heißt elektromagnetische Wechselwirkung.
Als Entdecker des Zusammenhangs von Elektrizität und Magnetismus gilt Hans Christian Ørsted (1820), obwohl er in Gian Domenico Romagnosi (1802) einen damals kaum beachteten Vorläufer hatte. Die Theorie der klassischen Elektrodynamik wurde von James Clerk Maxwell Mitte des 19. Jahrhunderts mithilfe der nach ihm benannten Maxwell-Gleichungen formuliert. Die Untersuchung der Maxwellgleichungen für bewegte Bezugssysteme führte Albert Einstein 1905 zur Formulierung der speziellen Relativitätstheorie. Im Laufe der 1940er Jahre gelang es, die Quantenmechanik und Elektrodynamik in der Quantenelektrodynamik zu kombinieren; deren Vorhersagen stimmen mit Messergebnissen sehr genau überein.
Eine wichtige Form von elektromagnetischen Feldern sind die elektromagnetischen Wellen, zu denen als bekanntester Vertreter das sichtbare Licht zählt. Dessen Erforschung bildet ein eigenes Gebiet der Physik, die Optik. Die physikalischen Grundlagen der Beschreibung elektromagnetischer Wellen liefert jedoch die Elektrodynamik.
经典电磁学(英語:Classical electromagnetism)或经典电动力学是理论物理学的分支,通常包含在广义的电磁学,以麦克斯韦方程组和洛伦兹力为基础,主要研究电荷和电流的电磁场及其彼此的电磁相互作用。当相关尺度和场强足够大以至于量子效应可忽略时(参见量子电动力学),这一套理论能够对电磁现象提供一个非常漂亮的描述。有关经典电磁理论的综述以及物理概念的详细解说可参见费曼、莱顿和桑斯[1];帕诺夫斯基和菲利普[2];以及杰克逊[3]等人的专著。
经典电磁理论主要发展於19世纪,以詹姆斯·克拉克·麦克斯韦的成就达到顶峰。关于这部分的历史可参见泡利[4]、惠特克[5]、派斯[6]的有关叙述。
天文


历史
信息时代

汽车

能源


企业


教育和研究
重要学科