Deutsch-Chinesische Enzyklopädie, 德汉百科
德语文学(德语:Deutschsprachige Literatur),指以德语为书面语言的文学作品。这包括德国、奥地利、瑞士等德语地区的文学,以及世界各地德裔的文学作品。传统上,德国大文豪歌德的诗剧《浮士德》被认为是德语文学中最优秀的作品,同时也是最经常被引用的作品。现代德语文学始于启蒙时代,一般使用标准德语。 中世纪德语文学 目前所知最早的德语文学作品是希尔德布兰特之歌Hildebrandslied( 约在公元八三零年成书 ) 现代德语文学萌芽期 文艺复兴(1500-1650) 巴洛克(1600-1720) 启蒙时期(1680-1789) 现代德语文学 十八世纪至十九世纪德语文学 二十世纪德语文学
Der Begriff deutschsprachige Literatur beziehungsweise deutsche Literatur bezeichnet die literarischen Werke in deutscher Sprache aus dem deutschen Sprachraum der Vergangenheit und Gegenwart.[1] Sie beginnt mit den althochdeutschen Merseburger Zaubersprüchen Mitte des 8. Jahrhunderts. Zur deutschsprachigen Literatur werden im weitesten Sinne die Gesamtheit aller Texte in deutscher Sprache gezählt. Nach einem engen Literaturbegriff werden deutschsprachige Texte, welche den Großgattungen Dramatik, Epik und Lyrik angehören sowie sprachlich ausgewählte Selbstzeugnisse, darunter Autobiografien, Memoiren, Tagebücher, Briefe, als auch Essays, literarische Reisebücher, Werke der Philosophie wie Geschichtsschreibung und Reden mit stilistischer Brilianz, der deutschsprachigen Literatur zugerechnet.
Die Digitaltechnik ist ein Teilgebiet der technischen Informatik und der Elektronik und befasst sich mit digitalen Schaltungen. In diesen erfolgt die Signalverarbeitung mit digitalen Signalen, d. h. mit Signalen, die diskretisiert (zeitdiskret) wie auch quantisiert (wertediskret) sind. Sie stellt das Gegenstück zur Analogtechnik dar. Durch technologische Innovationen seit 1900 konnte sie zunehmend Funktionen aus der Analogtechnik ersetzen und vor allem neue ermöglichen. Die Digitaltechnik hat unsere Welt derart verändert, dass der Begriff „postdigital“ entstand.
数字技术(英語:Digital Technology),是一种利用现代计算机技术从而将传统信息资源转换为计算机能够识别的数字信息的技术。通过该技术将各种传统形式的消息转化为可识别的二进制形式从而进一步得在计算机上进行相关工作。
Die Dynamik (altgriechisch δύναμις ‚Kraft‘) ist das Teilgebiet der Mechanik, das sich mit der Wirkung von Kräften befasst. In der Physik wird unter Dynamik die Beschreibung der Bewegung von Körpern in ihrer Abhängigkeit von den einwirkenden Kräften verstanden.
Im allgemeineren Sinn bezeichnet Dynamik in der Physik das (zeitliche) Verhalten eines dynamischen Systems und der Bewegungsgleichungen, die ihm zugrunde liegen.
Es existieren unterschiedliche Einteilungen der Dynamik.
动力学(Dynamics)是经典力学的一门分支,主要研究运动的变化与造成这变化的各种因素。换句话说,动力学研究力对物体之运动所造成的影响。运动学(kinematics)则是纯粹描述物体的运动,完全不考虑导致运动的因素。 更仔细地说,动力学研究由于力的作用,物理系统怎样改变。动力学的基础定律是艾萨克·牛顿提出的牛顿运动定律。对于任意物理系统,只要知道其作用力的性质,引用牛顿运动定律,就可以研究这作用力对于这物理系统的影响。 在经典电磁学里,物理系统的动力状况涉及了经典力学与电磁学,需要使用牛顿运动定律、麦克斯韦方程、洛伦兹力方程来描述。动力学是机械工程和航空工程的基础课程。
Elektrochemie bezeichnet mehrere verschiedene Teilgebiete innerhalb der Chemie. Sie ist zum einen eine Synthesemethode, präparative Elektrochemie oder Elektrolyse oder Elektrosynthese, zum anderen ist sie ein Teilgebiet der Physikalischen Chemie, welches sich mit dem Zusammenhang zwischen elektrischen und chemischen Vorgängen befasst. Weiterhin gibt es elektrochemische Methoden in der Analytischen Chemie. Die Technische Chemie kennt neben großtechnisch angewandten elektrochemischen Synthesemethoden noch die Batterie- und Brennstoffzellentechnik sowie die Galvanotechnik. Wie schnell elektrochemische Prozesse ablaufen wird durch die Elektrochemische Kinetik beschrieben.
电化学是物理化学的一个分支,研究的是电势(作为一种可测量和定量的标量)与化学变化之间的关系,电势是某种特定化学变化的结果,反之亦然。
传统观念认为电化学主要研究电能和化学能之间的相互转换,如电解和原电池。但电化学并不局限于电能出现的化学反应,也包含其它物理化学过程,如金属的电化学腐蚀,以及电解质溶液中的金属置换反应。
Die klassische Elektrodynamik (auch Elektrizitätslehre) ist das Teilgebiet der Physik, das sich mit bewegten elektrischen Ladungen und mit zeitlich veränderlichen elektrischen und magnetischen Feldern beschäftigt. Die Elektrostatik als Spezialfall der Elektrodynamik beschäftigt sich mit ruhenden elektrischen Ladungen und ihren Feldern. Die zugrundeliegende Grundkraft der Physik heißt elektromagnetische Wechselwirkung.
Als Entdecker des Zusammenhangs von Elektrizität und Magnetismus gilt Hans Christian Ørsted (1820), obwohl er in Gian Domenico Romagnosi (1802) einen damals kaum beachteten Vorläufer hatte. Die Theorie der klassischen Elektrodynamik wurde von James Clerk Maxwell Mitte des 19. Jahrhunderts mithilfe der nach ihm benannten Maxwell-Gleichungen formuliert. Die Untersuchung der Maxwellgleichungen für bewegte Bezugssysteme führte Albert Einstein 1905 zur Formulierung der speziellen Relativitätstheorie. Im Laufe der 1940er Jahre gelang es, die Quantenmechanik und Elektrodynamik in der Quantenelektrodynamik zu kombinieren; deren Vorhersagen stimmen mit Messergebnissen sehr genau überein.
Eine wichtige Form von elektromagnetischen Feldern sind die elektromagnetischen Wellen, zu denen als bekanntester Vertreter das sichtbare Licht zählt. Dessen Erforschung bildet ein eigenes Gebiet der Physik, die Optik. Die physikalischen Grundlagen der Beschreibung elektromagnetischer Wellen liefert jedoch die Elektrodynamik.
经典电磁学(英語:Classical electromagnetism)或经典电动力学是理论物理学的分支,通常包含在广义的电磁学,以麦克斯韦方程组和洛伦兹力为基础,主要研究电荷和电流的电磁场及其彼此的电磁相互作用。当相关尺度和场强足够大以至于量子效应可忽略时(参见量子电动力学),这一套理论能够对电磁现象提供一个非常漂亮的描述。有关经典电磁理论的综述以及物理概念的详细解说可参见费曼、莱顿和桑斯[1];帕诺夫斯基和菲利普[2];以及杰克逊[3]等人的专著。
经典电磁理论主要发展於19世纪,以詹姆斯·克拉克·麦克斯韦的成就达到顶峰。关于这部分的历史可参见泡利[4]、惠特克[5]、派斯[6]的有关叙述。
Die Elektronik ist ein Teilgebiet der Elektrotechnik. Sie ist die Wissenschaft und Technik von der Steuerung des elektrischen Stromes durch elektronische Schaltungen – das sind Schaltungen, in denen mindestens ein aktives Bauelement (zum Beispiel eine Vakuumröhre oder ein Halbleiter-Bauelement) arbeitet.
Aktive elektronische Bauelemente verhalten sich prinzipiell hinsichtlich ihrer Kennlinie nichtlinear, während sich passive elektrische und elektronische Bauelemente meist eher linear verhalten. Elektronik befasst sich auch mit dem Entwurf, der Konstruktion und dem Funktionsprinzip elektronischer Bauelemente. Die Mikroelektronik umfasst integrierte Schaltkreise, deren Strukturgrößen im Mikrometer- und Nanometerbereich liegt und die zunehmend diskret (das heißt, aus einzelnen aktiven und passiven Elementen) aufgebaute elektronische Schaltungen ablösen. Dessen ungeachtet findet eine zunehmende Miniaturisierung der Bauteile und Baugruppen statt.
Elektronik erzeugt und verarbeitet elektrische Signale (Informationsverarbeitung, Signalverstärkung und -konditionierung, früher als Schwachstromtechnik bezeichnet). Leistungselektronik wandelt elektrische Energie hinsichtlich ihre Spannung, ihres Stromes oder ihrer Schwingungsform und -frequenz.
Die Elektronik verwendet vorrangig Transistoren, Dioden sowie passive Bauelemente wie Kondensatoren und Widerstände.
Elektronische Schaltungen werden meist auf Leiterplatten aufgebaut (Leiterplattenbestückung) und zu elektronischen Baugruppen, Geräten und Apparaten zusammengebaut.
Die Optoelektronik ist ein Teilgebiet der Elektronik und erzeugt, verwendet und detektiert Licht im Zusammenhang mit der Funktion einer elektronischen Schaltung.
电子学(英语:electronics)是物理学的一门分支学科,专门研究电子、电子设备、电子电路等课题,利用包括“有源器件”(例如真空管、二极管、三极管、集成电路)和与之相关的“无源器件”等电子组件,来构成电路的互连技术。
有源器件的非线性特性和控制电子流动的能力,能够放大微弱信号,使得电子学广泛应用于信息处理、通信和信号处理。电子器件的开关特性,使处理数字信号成为可能。电路板、电子封装等互连技术和其他各种形式的通信基础组件,完善了电路功能并使连接在一起的组件成为一个正常工作的系统。
电子学有别于电机(electrical)和机电(electro-mechanical)科学与技术。电气和电机科学与技术是关于电能的产生、分布、开关、储存和转换,通过电线、电动机、发电机、电池、开关、中继器、变压器、电阻和其他无源器件从其他形式的能量转换为电能的学科。
Elektrotechnik ist eine Ingenieurwissenschaft, die sich mit der Forschung und der Entwicklung sowie der Produktion, dem Zusammenbau und der Instandhaltung von Elektrogeräten und elektrischen Anlagen befasst, die zumindest anteilig auf elektrischer Energie beruhen. Hierzu gehören als Beispiel der Bereich der Wandler, die elektrischen Maschinen und Bauelemente sowie Schaltungen für die Steuer-, Mess-, Regelungs-, Nachrichten-, Geräte- und Rechnertechnik bis hin zur technischen Informatik, Elektroinstallation und Energietechnik.
电气工程是以电子学、电磁学等物理学分支为基础,涵盖电子学、电子计算机、电力工程、电信、控制工程、信号处理、机械电子学等子领域的一门工程学。十九世纪后半期以来,随着电报、电话、电能在供应与使用方面的商业化,该学科逐渐发展为相对独立的专业领域。
电气工程广义上涵盖该领域的分支,但在有些地方,“电气工程”(英语:Electrical Engineering)一词的意义有时不包括“电子工程学”(英语:Electronic Engineering)。这个情况下,“电气工程”是指涉及到大能量的电力系统(如电能传输、重型电机机械及电动机),而“电子工程”则是指处理小信号的电子系统(如计算机和集成电路)。[1]
另一种区分法为,电力工程师着重于电能的传输,而电子工程师则着重于利用电子信号进行信息的传输。这些子领域的范围有时也会重叠:例如,电力电子学使用电力电子组件对电能进行变换和控制;又如,智能电网侦测电能供应者的电能供应状况与一般家庭用户的电能使用状况,并据之调整家电用品的耗电量,以此达到节约能源、降低损耗、增强输电网络可靠性的目的。因此,电气工程亦函盖电子工程部分领域的专业知识。
在生物学和医学中,胚胎学(英语:Embryology)是研究动物胚胎的形成和早期发育的分支[1]。研究范畴只限缩在受精之后到个体孵化出来,或者生出来的那段期间所产生的变化。
Die Embryologie (von altgriechisch ἔμβρυον embryon, deutsch ‚ungeborene Leibesfrucht‘, und -logie)[1] ist jenes Teilgebiet der Entwicklungsbiologie, das sich mit der Entwicklung der befruchteten Eizelle und des daraus entstehenden Embryos beschäftigt. Man spricht auch von der pränatalen Entwicklungsbiologie.
In Medizin und Zoologie wird von der Embryologie in der Folge auch das Wachstum des Feten behandelt.
英国文学或不列颠文学(英语:British literature)是指英国的文学作品。历史上,英国在不同时期包括了英格兰、苏格兰、威尔士、北爱尔兰、曼岛和海峡群岛等地,所以英国文学除英语作品之外,也涵盖了多种语言的文学。而English literature这个概念虽有“英格兰文学”的意思,但通常是指英语文学,包括了历史上来自爱尔兰、印度、澳大利亚等地使用英语写作的作家创作的作品。英国文学和英语文学之间重叠的部分很多,但彼此并不相同;苏格兰文学、威尔士文学也一般算作独立的重要学科。通常提到英国文学时,大部分人首先想到的是英格兰的英语文学。一般认为,莎士比亚的戏剧是英国文学中最优秀的作品,也是最经常被引用的作品。
Als englische Literatur bezeichnet man im Allgemeinen nicht nur die Literatur Englands, sondern die gesamte literarische Produktion Großbritanniens (historisch einschließlich Irlands) in englischer Sprache; die Bezeichnung „britische Literatur“ ist recht ungebräuchlich.
Mit den englischsprachigen Literaturen anderer Länder, etwa einstiger britischer Kolonien wie Australien oder Kanada, ergeben sich vielfach Überschneidungen, doch wird insbesondere die amerikanische Literatur seit dem 19. Jahrhundert als von der englischen verschiedene Nationalliteratur begriffen. Die englische Literatur ist Forschungsgegenstand der Anglistik.
流行病学是探讨人类群体健康及疾病的分布,并借由族群间分布差异来探索影响健康及疾病的影响因子,是公共卫生及预防医学研究的基础方法论, 同时在循证医学中做为辨别疾病因素和最佳临床治疗途径的科学理论。
在研究传染病及非传染性疾病时,流行病学家从事众多事项,包含疫情调查、研究设计、数据搜集及分析(如创建统计模块)等。流行病学家须跨足并使用不同领域的知识,如生物学、生物计量学、地理信息系统和社会科学。
Die Epidemiologie (von altgriechisch νόσος ἐπιδήμιος, nósos epidēmios „Epidemie, Volkskrankheit“,[1] und -logie wörtlich „die Lehre von dem, was über das Volk kommt“) ist jene wissenschaftliche Disziplin, die sich mit der Verbreitung sowie den Ursachen und Folgen von gesundheitsbezogenen Zuständen und Ereignissen in Bevölkerungen oder Populationen beschäftigt. Das unterscheidet die Epidemiologie von der klinischen Medizin, bei der es darum geht, einem einzelnen Menschen in einem konkreten Krankheitsfall zu helfen. Auch wenn sich Mediziner bereits zuvor mit der Verbreitung und den Ursachen von Krankheiten beschäftigt haben, wird der Beginn der wissenschaftlichen Epidemiologie auf die Mitte des 19. Jahrhunderts datiert. Einen Wissenschaftler, der sich speziell mit der Epidemiologie befasst, bezeichnet man als Epidemiologen.
Kern der epidemiologischen Vorgehensweise ist die quantitative Bestimmung der Ereignishäufigkeit und der Krankheitslast in einer Bevölkerung. Die Häufigkeit des Auftretens lässt sich mittels der Beobachtungsgröße der Inzidenz bestimmen. Die Prävalenz ist das Maß für die Verbreitung von Krankheiten in der Grundgesamtheit einer örtlich und zeitlich definierten Population. Die Epidemiologie untersucht weiter die Faktoren, die zu Gesundheit und Krankheit von Individuen und Populationen beitragen, und legt damit die Basis vieler Maßnahmen, die im Interesse der Gesundheit der Bevölkerung unternommen werden. Epidemiologische Methoden bilden die Grundlage klinischer Studien. Epidemiologische Untersuchungen spielen auch in der Soziologie und Psychologie eine Rolle, z. B. bei Verhaltensstörungen, Autismus und Selbsttötungen. So können Zusammenhänge mit der Verbreitung dieser Erscheinungen erfasst und ggf. beeinflusst werden.
Der Begriff der Bevölkerung oder Population bezieht sich nicht ausschließlich auf menschliche Populationen, auch Tiere und Pflanzen bilden Populationen. Also untersucht die Veterinärepidemiologie oder Epizootiologie die Verbreitung von Krankheiten in Tierpopulationen, die botanische Epidemiologie untersucht Krankheiten auf Pflanzen.