Deutsch-Chinesische Enzyklopädie, 德汉百科

       
Deutsch — Chinesisch
Catalog Wichtige Disziplinen

恆星動力學 恒星动力学/Stellar dynamics
Die Stellardynamik befasst sich mit der scheinbaren und absoluten Bewegung von Sternen in verschiedenen Sternhaufen und anderen Sternsystemen, um daraus ihre Bildung und weitere Entwicklung abzuleiten. Dieses Teilgebiet der Astronomie hat mit zahlreichen Schwierigkeiten zu kämpfen, darunter die riesigen Entfernungen, die Kleinheit der zu messenden Effekte, die Wirkung systematischer Fehler und die gegenseitige Beeinflussung von hunderten bis Millionen schwerer Massen.

恒星动力学天文物理的一个分支,以统计学的方法介绍恒星在它们共同重力下的集体运动。但重力的长距离效应和恒星系统缓慢的弛豫,阻碍了统计物理方法的使用。一颗恒星在星系球状星团内的运动,主要受到其它恒星的平均分布和恒星距离的影响,和最邻近的恒星少量的影响。

如果物质的分布是理想化的平滑,恒星的弛豫过程是倾向于每颗恒星有着各别的运动轨迹的。2-体弛豫被限制在一颗恒星和另一颗恒星之间的交互作用下,而"剧变弛豫"是大型恒星集团系统集体变异所造成的。

Die Stellardynamik befasst sich mit der scheinbaren und absoluten Bewegung von Sternen in verschiedenen Sternhaufen und anderen Sternsystemen, um daraus ihre Bildung und weitere Entwicklung abzuleiten.

Dieses Teilgebiet der Astronomie hat mit zahlreichen Schwierigkeiten zu kämpfen, darunter die riesigen Entfernungen, die Kleinheit der zu messenden Effekte, die Wirkung systematischer Fehler und die gegenseitige Beeinflussung von hunderten bis Millionen schwerer Massen.

Dieses Bild, Video oder Audio ist eventuell urheberrechtlich geschützt. Es wird nur für Bildungszwecke genutzt. Wenn Sie es finden, benachrichtigen Sie uns bitte per und wir werden es sofort entfernen.
立體化學 立体化学/Stereochemistry
立体化学(stereochemistry),有机化学的主要内容。研究有机物在三维空间内的结构与变化的化学分支。由于碳以及所有其他元素的化学键往往不是在二维平面上伸展的,于是就产生了相应的异构现象,由此产生了立体化学这门学科。[1][2] 立体化学的一个重要分支是手性分子的研究。 立体化学涵盖了有机的,无机的,生物的,物理的,尤其是超分子的化学的整个频谱。 立体化学包括确定和描述这些关系的方法。

立体化学(stereochemistry),有机化学的主要内容。研究有机物三维空间内的结构与变化的化学分支。由于以及所有其他元素化学键往往不是在二维平面上伸展的,于是就产生了相应的异构现象,由此产生了立体化学这门学科。[1][2]

立体化学的一个重要分支是手性分子的研究。 立体化学涵盖了有机的无机的生物的物理的,尤其是超分子的化学的整个频谱。 立体化学包括确定和描述这些关系的方法。

Die Stereochemie ist ein Teilgebiet der Chemie, das im Wesentlichen zwei Aspekte behandelt:

  • die Lehre vom dreidimensionalen Aufbau der Moleküle, die die gleiche chemische Bindung und Zusammensetzung, aber eine verschiedene Anordnung der Atome aufweisen, wobei die KonstitutionKonfiguration und Konformation den dreidimensionalen Aufbau des Moleküls bestimmen (stereochemische Isomerie)
  • die Lehre vom räumlichen Ablauf chemischer Reaktionen stereoisomerer Moleküle (stereochemische Dynamik).

Das Studium stereochemischer Phänomene erstreckt sich auf das gesamte Gebiet der organischenanorganischenphysikalischen und supramolekularen Chemie sowie der Biochemie.

Dieses Bild, Video oder Audio ist eventuell urheberrechtlich geschützt. Es wird nur für Bildungszwecke genutzt. Wenn Sie es finden, benachrichtigen Sie uns bitte per und wir werden es sofort entfernen.
隨機過程 随机过程/Stochastic process
Ein stochastischer Prozess (auch Zufallsprozess) ist ein mathematisches Objekt zur Modellierung von zufälligen, oft zeitlich geordneten, Vorgängen. Die Theorie der stochastischen Prozesse stellt eine wesentliche Erweiterung der Wahrscheinlichkeitstheorie dar und bildet die Grundlage für die stochastische Analysis. Obwohl einfache stochastische Prozesse schon vor langer Zeit studiert wurden, wurde die heute gültige formale Theorie erst Anfang des 20. Jahrhunderts entwickelt, vor allem durch Paul

机率论中,随机过程(英语:Stochastic process 或 Random process),又称随机函数(英语:Random function)[1][2],代表一群被足码标记随机变量。随机过程的实例如股票汇率的波动、语音信号视频信号体温的变化,随机运动如布朗运动随机徘徊等等。

Dieses Bild, Video oder Audio ist eventuell urheberrechtlich geschützt. Es wird nur für Bildungszwecke genutzt. Wenn Sie es finden, benachrichtigen Sie uns bitte per und wir werden es sofort entfernen.
口腔醫學 口腔医学/Oral medicine
Die Stomatologie (griechisch στόμα stóma, deutsch ‚Mund‘ und λόγος lógos, deutsch ‚Wort‘, ‚Lehre‘) ist die Wissenschaft der Heilkunde der Krankheiten der Mundhöhle, also der Mund-, Kiefer- und Zahnmedizin.

Die Stomatologie (griechisch στόμα stóma, deutsch ‚Mund‘ und λόγος lógos, deutsch ‚Wort‘, ‚Lehre‘) ist die Wissenschaft der Heilkunde der Krankheiten der Mundhöhle, also der Mund-, Kiefer- und Zahnmedizin

口腔医学口腔科是一门与口腔有关的学科和门诊,涉及复杂的口腔健康护理,包括口腔和颌面部的诊断和治疗。口腔科医生在诊断和口腔粘膜异常等疾病时要接受额外的专业培训和实践操作。

Dieses Bild, Video oder Audio ist eventuell urheberrechtlich geschützt. Es wird nur für Bildungszwecke genutzt. Wenn Sie es finden, benachrichtigen Sie uns bitte per und wir werden es sofort entfernen.
弦理論 弦理论/String theory
Als Stringtheorie bezeichnet man eine Sammlung eng verwandter hypothetischer physikalischer Modelle, die anstelle der Beschreibung von Elementarteilchen in den gewohnten Modellen der Quantenfeldtheorie als punktförmige Teilchen (räumliche Dimension Null) in der Raum-Zeit sogenannte Strings (englisch für Fäden oder Saiten) als fundamentale Objekte mit eindimensionaler räumlicher Ausdehnung verwenden.

弦理论(英语:String theory),又称弦论,是发展中理论物理学的起始,是一在量子力学及相对论、微积分等相对发展完善后,试图透过单一解释的系统统一物质和基本作用力的万有理论

弦理论雏形奠基于二十世纪中叶后半由加布里埃莱·韦内齐亚诺主张并提出,原始目的是找到诠释强相互作用力之数学函数,但据此数学函数南部阳一郎博士发现可将不具空间之零维点粒子视为细小的弦,进而提出强子弦模型。弦论在一段时间不备受关注,除其复杂的高维度诠释外,量子色动力学等场论早已能完美解释强相互作用力。而后弦论被少数科学家发现其解释若套用到重力则可以完美解释关于重力无法纳入大统一理论中的窘境,史称第一次弦论革命,而后第二次弦论革命解决对偶性问题,正式与标准模型(2012年7月4日,CERN LHC CMS&ATLAS 向量玻色子散射实验双盲共同发表成果发掘出的标准模型希格斯玻色子使其成为下述三大万物理论最具权威性的理论)及环圈量子引力场论并肩成为大统一理论备受瞩目的可能性选项,其严谨幻妙的数学式、不需重整化的构思及对称性让许多物理学家徜徉于其中。

弦理论用一段段“能量弦线”作最基本单位以说明宇宙里所有微观粒子如电子夸克、中微子都由这一维的“能量线”所组成;换而言之,弦论主张“”以不同的振动模式对应到自然界的各种基本粒子

较早时期所建立的粒子学说则是认为所有物质是由零维的点粒子所组成,也是目前广为接受的物理模型,也很成功的解释和预测相当多的物理现象和问题,但是此理论所根据的粒子模型却遇到一些无法解释的问题。比较起来,弦理论的基础是波动模型,因此能够避开前一种理论所遇到的问题。更深的弦理论学说不只是描述弦状物体,还包含了点状、薄膜状物体,更高维度的空间,甚至平行宇宙。弦理论目前尚未能做出可以实验验证的准确预测。

Als Stringtheorie bezeichnet man eine Sammlung eng verwandter hypothetischer physikalischer Modelle, die anstelle der Beschreibung von Elementarteilchen in den gewohnten Modellen der Quantenfeldtheorie als punktförmige Teilchen (räumliche Dimension Null) in der Raum-Zeit sogenannte Strings (englisch für Fäden oder Saiten) als fundamentale Objekte mit eindimensionaler räumlicher Ausdehnung verwenden. In Erweiterungen der Stringtheorie werden auch höherdimensionale Objekte betrachtet. Stringtheorien wurden in den 1960er Jahren zur Beschreibung der starken Wechselwirkung (Quantenchromodynamik) eingeführt.

Seit den 1980er Jahren erlebte die Stringtheorie einen starken Aufschwung. Sie gilt seitdem als eine Kandidatin für eine alle Naturkräfte vereinheitlichende Theorie, die das Standardmodell der Elementarteilchenphysik und die Gravitation miteinander verbindet. Diskutiert wird dabei vor allem die supersymmetrische Version der Stringtheorie („Superstringtheorie“). Die Supersymmetrie sagt neue, supersymmetrische Partnerteilchen für alle Bosonen und Fermionen voraus. Zum Aufschwung der Superstringtheorie trug erheblich bei, dass sie konkrete Vorhersagen für die Symmetriegruppen einer Großen Vereinheitlichten Theorie (GUT) machte. Des Weiteren fanden Vorhersagen zur Betrachtung von Quantenfeldtheorien (wie das holografische Prinzip in AdS/CFT) große Beachtung.[1] In den 1990er Jahren stellte sich heraus, dass die bis dahin bekannten Superstringtheorien und die 11-dimensionale Supergravitation miteinander verbunden als Teil einer umfassenderen Theorie („M-Theorie“ genannt) betrachtet werden können. Letztere umfasst auch höherdimensionale Objekte (sogenannte „Brane“). Die Stringtheorie führte zu einem engen Austausch zwischen verschiedenen Gebieten der Mathematik und theoretischen Physik.[1][2]

Die Stringtheorie ist gegenwärtig weder experimentell bestätigt noch widerlegt. Dies liegt unter anderem daran, dass die Vereinigung der Naturkräfte erst auf Energieskalen erwartet wird (siehe Planck-Skala), die in absehbarer Zeit nicht erreichbar sind. Die Stringtheorie wird daher seit den 2000er Jahren sowohl innerhalb als auch außerhalb der Physik kritisiert. Die Kritik richtet sich dabei auch auf die einseitige und außergewöhnliche Bindung von Forschungsressourcen in Gebieten, die Anwendungen fern stehen, und erfolgte besonders dezidiert von Theoretikern, die alternative Theorien der Quantengravitation verfolgen (wie die Schleifenquantengravitation).[3][4] Zudem tauchten bei der konkreten mathematischen Durcharbeitung der Stringtheorie unerwartet viele Varianten auf, die die Erfolgsaussichten, alle Naturkräfte über die Stringtheorie zu vereinheitlichen, in weite Ferne rücken.

Heute gilt die Stringtheorie zwar als „verlockend“ und „mathematisch sehr elegant“, da sie aber keine Vorhersagen macht, die aktuell experimentell bestätigt werden könnten, wird ihre praktische Bedeutung für die Teilchenphysik in Abrede gestellt.

Dieses Bild, Video oder Audio ist eventuell urheberrechtlich geschützt. Es wird nur für Bildungszwecke genutzt. Wenn Sie es finden, benachrichtigen Sie uns bitte per und wir werden es sofort entfernen.
流體力學 流体力学/Fluid mechanics
Die Strömungsmechanik, Fluidmechanik oder Strömungslehre ist die Wissenschaft vom physikalischen Verhalten von Fluiden. Die in der Strömungsmechanik gewonnenen Kenntnisse sind Gesetzmäßigkeiten in Strömungsvorgängen und dienen der Lösung von Strömungsproblemen in der Auslegung von durch- bzw. umströmten Bauteilen sowie der Überwachung von Strömungen.

Die StrömungsmechanikFluidmechanik oder Strömungslehre ist die Wissenschaft vom physikalischen Verhalten von Fluiden. Die in der Strömungsmechanik gewonnenen Kenntnisse sind Gesetzmäßigkeiten in Strömungsvorgängen und dienen der Lösung von Strömungsproblemen in der Auslegung von durch- bzw. umströmten Bauteilen sowie der Überwachung von Strömungen. Angewendet wird sie unter anderem im MaschinenbauChemieingenieurwesen, der Wasser- und EnergiewirtschaftMeteorologieAstrophysik und der Medizin. Ihre Grundlagen findet sie in der Kontinuumsmechanik und Thermodynamik, also der klassischen Physik.

流体力学(英语:Fluid mechanics)是力学的一门分支,是研究流体(包含气体液体等离子体)现象以及相关力学行为的科学。流体力学可以按照研究对象的运动方式分为流体静力学流体动力学,前者研究处于静止状态的流体,后者研究对于流体运动的影响。流体力学按照应用范围,分为空气力学水力学等。

流体力学是连续介质力学的一门分支,是以宏观的角度来考虑系统特性,而不是微观的考虑系统中每一个粒子的特性。流体力学(尤甚是流体动力学)是一个活跃的研究领域,其中有许多尚未解决或部分解决的问题。流体动力学所应用的数学系统非常复杂,最佳的处理方式是利用电脑进行数值分析,如计算流体力学通过数值分析的方式求解流体力学问题。粒子图像测速技术是一个将流体流场视觉化并进行分析的实验方式,也利用了流体高度可见化的特点。

理论流体力学的基本方程是纳维-斯托克斯方程简称N-S方程,纳维-斯托克斯方程由一些微分方程组成,通常只有透过给予特定的边界条件与使用数值计算的方式才可求解。纳维-斯托克斯方程中包含速度�→=(�,�,�)压强密度黏度,和温度变量,而这些都是位置(�,�,�)时间t的函数。通过质量守恒能量守恒动量守恒,以及热力学方程�(�,�,�)介质材料性质,我们可以确定这些变量与其应变的关系。

Dieses Bild, Video oder Audio ist eventuell urheberrechtlich geschützt. Es wird nur für Bildungszwecke genutzt. Wenn Sie es finden, benachrichtigen Sie uns bitte per und wir werden es sofort entfernen.
結構生物學 结构生物学/Structural biology
Strukturbiologie ist ein Gebiet der biologischen Grundlagenforschung. Sie beschäftigt sich mit der molekularen Struktur von biologischen Makromolekülen, insbesondere Proteinen. Die Strukturbiologie ist ein wichtiges Teilgebiet und Grundlage der Biochemie und der Molekularbiologie.

结构生物学(Structural biology)是分子生物学生物化学生物物理学的分支学科,其研究涉及生物大分子(如蛋白质的分子和核酸的分子)的三级结构(tertiary structure)(包括构架和形态)、它们是如何获得它们的结构、它们的结构改变如何影响其功能[1]

生物学家对该主题非常感兴趣,因为大分子实现了细胞的大多数功能,并且只有通过卷绕成特定的三维形状才能实现这些功能;这种结构是分子的“三级结构”,它以复杂的方式依赖于每个分子的基本组成或“一级结构”(Primary structure)。

Strukturbiologie ist ein Gebiet der biologischen Grundlagenforschung. Sie beschäftigt sich mit der molekularen Struktur von biologischen Makromolekülen, insbesondere Proteinen. Die Strukturbiologie ist ein wichtiges Teilgebiet und Grundlage der Biochemie und der Molekularbiologie.

KristallstrukturanalyseKernspinresonanz und Elektronenmikroskopie sind die wichtigsten experimentellen Methoden, um die Raumstruktur biologischer Makromoleküle zu atomarer Auflösung zu bestimmen. Mit ihnen wird in der Regel die Struktur im gefalteten Zustand bestimmt. Insbesondere die Kernspinresonanz ist jedoch auch geeignet, um den Vorgang der Proteinfaltung zu untersuchen.

Dieses Bild, Video oder Audio ist eventuell urheberrechtlich geschützt. Es wird nur für Bildungszwecke genutzt. Wenn Sie es finden, benachrichtigen Sie uns bitte per und wir werden es sofort entfernen.
構造地質學 构造地质学/Structural geology
Strukturgeologie (lat. structura ‚Bau‘) ist die Lehre vom Bau der Erdkruste, ein Zweig der analytischen Tektonik. Sie befasst sich mit den räumlichen Beziehungen der Gesteine zueinander und den in ihnen erkennbaren Deformationen.

构造地质学(英語:Structural geology)是地质学的一门分支,主要是研究岩石的构造形态、空间分布和形成原因,从而揭示地壳运动的规律。其研究成果广泛应用于区域地质调查、资源勘探等领域。结构地质学的主要目标是使用当今岩石几何形状的测量数据揭示岩石中变形(形变)的历史信息,并最终理解导致观察到的应变和几何形状的应力场。 这种对应力场动力学的理解可以与地质历史上的重要事件联系起来; 一个共同的目标是了解由于板块构造所造成的区域性岩石变形模式(例如,造山运动裂谷)的特定区域的结构演变。

Strukturgeologie (lat. structura ‚Bau‘) ist die Lehre vom Bau der Erdkruste, ein Zweig der analytischen Tektonik. Sie befasst sich mit den räumlichen Beziehungen der Gesteine zueinander und den in ihnen erkennbaren Deformationen.

Die moderne Tektonik unterscheidet:

Dieses Bild, Video oder Audio ist eventuell urheberrechtlich geschützt. Es wird nur für Bildungszwecke genutzt. Wenn Sie es finden, benachrichtigen Sie uns bitte per und wir werden es sofort entfernen.
商業銀行經營學 商业银行经营学/Commercial Banking studies

Dieses Bild, Video oder Audio ist eventuell urheberrechtlich geschützt. Es wird nur für Bildungszwecke genutzt. Wenn Sie es finden, benachrichtigen Sie uns bitte per und wir werden es sofort entfernen.
系統音樂學 系统音乐学/Systematic musicology
Systematische Musikwissenschaft ist ein vor allem in Mitteleuropa verwendeter Oberbegriff für mehrere Teildisziplinen und Paradigmen der Musikwissenschaft. "Die systematische Musikwissenschaft wird traditionell als interdisziplinäre Wissenschaft verstanden, deren Ziel es ist, die Grundlagen der Musik aus verschiedenen Blickwinkeln wie Akustik, Physiologie, Psychologie, Anthropologie, Musiktheorie, Soziologie und Ästhetik zu untersuchen.

 

Systematische Musikwissenschaft ist ein vor allem in Mitteleuropa verwendeter Oberbegriff für mehrere Teildisziplinen und Paradigmen der Musikwissenschaft. "Die systematische Musikwissenschaft wird traditionell als interdisziplinäre Wissenschaft verstanden, deren Ziel es ist, die Grundlagen der Musik aus verschiedenen Blickwinkeln wie Akustik, Physiologie, Psychologie, Anthropologie, Musiktheorie, Soziologie und Ästhetik zu erforschen. Die wichtigsten Teildisziplinen sind heute die Musikpsychologie, die Soziomusikologie (Musiksoziologie), die Musikphilosophie (Musikphilosophie), die Musikakustik (Musikphysik), die kognitiven Neurowissenschaften der Musik und die Computerwissenschaften der Musik (einschließlich Sound and Music Computing, Music Information Retrieval und Computing in Musicology). Diese Teildisziplinen und Paradigmen befassen sich eher mit Fragen zur Musik im Allgemeinen als mit spezifischen Erscheinungsformen der Musik.

系统音乐学是一个总括术语,主要用于中欧,指音乐学的几个分支学科和范式。"系统音乐学历来被视为一门跨学科科学,其目的是从声学、生理学、心理学、人类学、音乐理论、社会学和美学等不同角度探索音乐的基础"。当今最重要的分支学科有音乐心理学、社会音乐学(音乐社会学)、音乐哲学(音乐哲学)、音乐声学(音乐物理学)、音乐认知神经科学和音乐计算机科学(包括声音和音乐计算、音乐信息检索和音乐学计算)。这些分支学科和范式倾向于解决有关音乐的一般问题,而不是音乐的具体表现。

Dieses Bild, Video oder Audio ist eventuell urheberrechtlich geschützt. Es wird nur für Bildungszwecke genutzt. Wenn Sie es finden, benachrichtigen Sie uns bitte per und wir werden es sofort entfernen.
系統論 系统论/Systems theory
Systemtheorie ist eine interdisziplinäre Betrachtungsweise, in der grundlegende Aspekte und Prinzipien von Systemen zur Beschreibung und Erklärung unterschiedlich komplexer Phänomene herangezogen werden.

Systemtheorie ist eine interdisziplinäre Betrachtungsweise, in der grundlegende Aspekte und Prinzipien von Systemen zur Beschreibung und Erklärung unterschiedlich komplexer Phänomene herangezogen werden.

So verschiedene Gegenstandsbereiche und Modelle wie das Sonnensystem, biologische Zellen, der Mensch, eine Familie, eine Organisation, ein Staat, aber auch Maschinen und Computernetzwerke können als Systeme aufgefasst und systemtheoretisch beschrieben werden. Kognitive Prozesse des Erkennens und Problemlösens, die auf Konzepte der Systemtheorie Bezug nehmen, werden oft unter dem Begriff Systemdenken zusammengefasst.

Die Analyse von Strukturen, Dynamiken und Funktionen soll eine umfassendere Sicht ermöglichen und realistischere Vorhersagen über das Systemverhalten erlauben. Systemtheoretische Begriffe werden in den verschiedensten wissenschaftlichen Disziplinen angewandt. „Die Systemtheorie hat von Anfang an das Ziel verfolgt, der Zersplitterung des Wissens in den wissenschaftlichen Disziplinen entgegenzuwirken.“[1]

Die Systemtheorie ist sowohl eine allgemeine und eigenständige Disziplin als auch ein weitverzweigter und heterogener Rahmen für einen interdisziplinären Diskurs, der den Begriff System als Grundkonzept führt. Es gibt folglich sowohl eine allgemeine „Systemtheorie“ als auch eine Vielzahl unterschiedlicher, zum Teil widersprüchlicher und konkurrierender Systemdefinitionen und -begriffe. Es hat sich heute jedoch eine relativ stabile Reihe an Begriffen und Theoremen herausgebildet, auf die sich der systemtheoretische Diskurs bezieht.

Dieses Bild, Video oder Audio ist eventuell urheberrechtlich geschützt. Es wird nur für Bildungszwecke genutzt. Wenn Sie es finden, benachrichtigen Sie uns bitte per und wir werden es sofort entfernen.
分類學 分类学/Taxonomy
Eine Taxonomie ist ein einheitliches Verfahren oder Modell (Klassifikationsschema), mit dem Objekte nach bestimmten Kriterien klassifiziert, das heißt in Kategorien oder Klassen (auch Taxa genannt) eingeordnet werden. Naturwissenschaftliche Disziplinen verwenden den Begriff der Taxonomie für eine in der Regel hierarchische Klassifikation (Klassen, Unterklassen usw.).

Eine Taxonomie (altgriechisch τάξις táxis ,Ordnung’ und νόμος nómos ,Gesetz’) ist ein einheitliches Verfahren oder Modell (Klassifikationsschema), mit dem Objekte nach bestimmten Kriterien klassifiziert, das heißt in Kategorien oder Klassen (auch Taxa genannt) eingeordnet werden.[1] Naturwissenschaftliche Disziplinen verwenden den Begriff der Taxonomie für eine in der Regel hierarchische Klassifikation (Klassen, Unterklassen usw.).

Taxonomien sind für die Entwicklung einer Wissenschaft von erheblicher Bedeutung: Sie erleichtern den Umgang mit Einzelfällen und ermöglichen summarische Aussagen, die bis hin zu einer Erklärung von Zusammenhängen führen können. Sie zwingen zur Klarheit über die Unterschiede zwischen den Kategorien und führen dadurch zu einem besseren Verständnis des Untersuchungsbereichs.

Anthropologische Untersuchungen zeigen, dass die in bestimmten Sprach- und Kulturräumen verwendeten Taxonomien in örtliche, kulturelle und soziale Systeme eingebettet sind und unterschiedlichen sozialen Zwecken dienen. Eine der bekanntesten und einflussreichsten Studien über Laien-Taxonomien (folk taxonomies) ist Émile Durkheims Die elementaren Formen des religiösen Lebens.

分类学(英语:Taxonomy)是一门进行分类的方法科学,源于希腊文的τάξιςtaxis,意指类别),以及νόμοςnomos,意指方法、法则、科学)。不同层级的分类单位之间,有子分类与母分类的关系。举例而言,车子是一种交通工具,因而车子是交通工具的子分类。

分类学的主要分支有生物分类学图书分类学等。

分类学有广义与狭义之分。广义分类学就是系统学,指分门别类的科学。 狭义分类学特指生物分类学,研究活着的和已灭绝的动植物分类的科学,即研究动物、植物的鉴定、命名和描述,把物种科学地划分到一种等级系统以此反映对其系统发育的了解情况。

分类学是综合性学科。生物学的各个分支,从古老的形态学到现代分子生物学的新成就,都可吸取为分类依据。分类学亦有其自己的分支学科,如以染色体为依据的细胞分类学(或染色体分类学),以血清反应为依据的血清分类学,以化学成分为依据的化学分类学等等。动物、植物和微生物,作为三门分类学,各有其特点;病毒分类则尚未正式采用双名制阶元系统。此外,有以文献为依据的文献分类学

分类学 taxonomy,systematics

分类学是区分事物类别的学科。

英文分类学taxonomy指动植物分类, systematics指系统分类。

“分”即鉴定、描述和命名,“类”即归类,按一定秩序排列类群,也是系统演化。

广义分类学观点:分类学就是系统学。指分门别类的科学。

分类学(广义分类学)包括许多细分学科,例如:

信息分类学information taxonomy、数值分类学numerical taxonomy、农业生态分类学agro-ecological taxonomy、经典分类学Classical Taxonomy、现代分类学Modern Taxonomy、土壤分类学Soil Taxology、化学分类学chemical taxonomy、分子分类学molecular taxonomy、教育目标分类学taxonomy of educational objectives、犯罪分类学criminal taxology等等。

狭义分类学特指生命分类学。

分类学分类学

狭义分类学包括:生物分类学Biotaxy、微生物分类学microbial taxonomy、动物分类学animal taxonomy、植物分类学plant taxonomy、脊椎动物分类学Vertebrate Taxology、鱼类分类学Fish Taxonomy、昆虫分类学entomological taxonomy、鸟类分类学Birds Taxonomy、寄生虫分类学Parasite Taxology、病毒分类学Virus Taxology、实验分类学Experimental Taxonomy、种子植物分类学Taxonomy of Seed Plants、被子植物分类学Angiosperm Taxonomy、遗传分类学genetic taxonomy、进化分类学evolutionary taxonomy等等。

分类学,英文taxonomy特指生物分类学。

生物分类学,研究活着的和已灭绝的动植物分类的科学,即研究动物、植物的鉴定、命名和描述,把物种科学地划分到一种等级系统以此反映对其系统发育的了解情况。

研究生物分类的方法和原理的生物学分支。分类就是遵循分类学原理和方法,对生物的各种类群进行命名和等级划分。分类学曾被称为系统分类学,但它与系统学很易混淆,系统学是研究生物的分异度(多样性)以及它们中间的任何一个类群和其他所有类群的各种关系的科学,曾称为分类系统学。三者的共同目的是从理论上和实践上,阐明种类之间的关系(或亲缘关系),建立自然系统,确定各类群的命名和排序,总结其进化历史。

地球上现生的物种以百万计,千变万化,各不相同,如果不予分类,不立系统,便无从认识,难以利用。分类系统是生物种类的查找系统,可借以认识和查取有关资料。分类的对象是形形色色的种类,都是进化的产物;分类学在于阐明种类之间的历史渊源,使建立的分类系统反映进化历史。因而从理论意义上说,分类学是生物进化的历史总结。

Dieses Bild, Video oder Audio ist eventuell urheberrechtlich geschützt. Es wird nur für Bildungszwecke genutzt. Wenn Sie es finden, benachrichtigen Sie uns bitte per und wir werden es sofort entfernen.