
Deutsch-Chinesische Enzyklopädie, 德汉百科
Important disciplines

Die Komplexitätstheorie als Teilgebiet der theoretischen Informatik befasst sich mit der Komplexität algorithmisch behandelbarer Probleme auf verschiedenen formalen Rechnermodellen. Die Komplexität von Algorithmen wird in deren Ressourcenverbrauch gemessen, meist Rechenzeit oder Speicherplatzbedarf, manchmal auch speziellere Maße wie die Größe eines Schaltkreises oder die Anzahl benötigter Prozessoren bei parallelen Algorithmen. Die Komplexität eines Problems ist wiederum die Komplexität desjenigen Algorithmus, der das Problem mit dem geringstmöglichen Ressourcenverbrauch löst.
Die Komplexitätstheorie unterscheidet sich von der Berechenbarkeitstheorie, die sich mit der Frage beschäftigt, welche Probleme prinzipiell algorithmisch gelöst werden können. Demgegenüber besteht das wichtigste Forschungsziel der Komplexitätstheorie darin, die Menge aller lösbaren Probleme zu klassifizieren. Insbesondere versucht man, die Menge der effizient lösbaren Probleme, deren Ressourcenverbrauch in der Praxis bewältigt werden kann, von der Menge der inhärent schwierigen Probleme abzugrenzen.
计算复杂性理论(Computational complexity theory)是理论计算机科学和数学的一个分支,它致力于将可计算问题根据它们本身的复杂性分类,以及将这些类别联系起来。一个可计算问题被认为是一个原则上可以用计算机解决的问题,亦即这个问题可以用一系列机械的数学步骤解决,例如算法。
如果一个问题的求解需要相当多的资源(无论用什么算法),则被认为是难解的。计算复杂性理论通过引入数学计算模型来研究这些问题以及定量计算解决问题所需的资源(时间和空间),从而将资源的确定方法正式化了。其他复杂性测度同样被运用,比如通信量(应用于通信复杂性),电路中门的数量(应用于电路复杂性)以及中央处理器的数量(应用于并行计算)。计算复杂性理论的一个作用就是确定一个能或不能被计算机求解的问题的所具有的实际限制。
在理论计算机科学领域,与此相关的概念有算法分析和可计算性理论。两者之间一个关键的区别是前者致力于分析用一个确定的算法来求解一个问题所需的资源量,而后者则是在更广泛意义上研究用所有可能的算法来解决相同问题。更精确地说,它尝试将问题分成能或不能在现有的适当受限的资源条件下解决这两类。相应地,在现有资源条件下的限制正是区分计算复杂性理论和可计算性理论的一个重要指标:后者关心的是何种问题原则上可以用算法解决。

凝聚态物理学专门研究物质凝聚相的物理性质[1]。该领域的研究者力图通过物理学定律来解释凝聚相物质的行为。其中,量子力学、电磁学以及统计力学的相关定律对于该领域尤为重要。
固相以及液相是人们最为熟悉的凝聚相。除了这两种相之外,凝聚相还包括一些特定的物质在低温条件下的超导相、自旋有关的铁磁相及反铁磁相、超低温原子系统的玻色-爱因斯坦凝聚相等等。对于凝聚态的研究包括通过实验手段测定物质的各种性质,以及利用理论方法发展数学模型以深入理解这些物质的物理行为。
由于尚有大量的系统及现象亟待研究,凝聚态物理学成为了目前物理学最为活跃的领域之一。仅在美国,该领域的研究者就占到该国物理学者整体的近三分之一[2],凝聚态物理学部也是美国物理学会最大的部门[3]。此外,该领域还与化学,材料科学以及纳米技术等学科领域交叉,并与原子物理学以及生物物理学等物理学分支紧密相关。该领域研究者在理论研究中所采用的一些概念与方法也适用于粒子物理学及核物理学等领域。
Die Physik der kondensierten Materie unterscheidet sich aufgrund der gegenseitigen Wechselwirkung der Bausteine der Materie erheblich von der freier Teilchen (Elementarteilchenphysik, Atomphysik). Viele Phänomene wie Deformierbarkeit, magnetische Ordnung, oder elektrische Leitfähigkeit gehen auf eine bestimmte Ordnung der Wechselwirkung zwischen den Bausteinen der kondensierten Materie zurück. Sie sind daher in kondensierter Materie ganz anders zu behandeln als bei freien Teilchen oder treten überhaupt erst bei kondensierter Materie auf.
Die Behandlung der Physik kondensierter Materie ist dadurch gekennzeichnet, dass die große Anzahl der Teilchen, die das zu beschreibende System bilden, eine elementare Lösung der einzelnen Bewegungsgleichungen ausschließt. An die Stelle einer Beschreibung der Zustände der einzelnen Teilchen des Systems treten stattdessen Aussagen über Häufigkeiten (beziehungsweise normiert auf die Anzahl der möglichen Zustände: Wahrscheinlichkeiten), mit denen bestimmte Zustände beliebiger Teilchen im System auftreten.
Die allgemeine, mikroskopische Beschreibung basiert auf der Vielteilchentheorie, welche auch Teilchenwechselwirkungen untereinander berücksichtigt. Für die meisten Anwendungen reicht aber eine Beschreibung im Rahmen der Theorie des mittleren Feldes aus, in der sich alle Teilchen unabhängig voneinander in einem gemittelten, effektiven Potential bewegen. Vertreter Letzterer sind die Hartree-Fock-Methode und Dichtefunktionaltheorie, mit deren Hilfe beispielsweise eine Vielzahl von Materialparametern gewonnen werden können. Mit den gewonnenen Materialdaten kann das System unter Berücksichtigung makroskopischer Systemeigenschaften wie System-Geometrie und äußerer Belastungen mit Hilfe von klassischen Feldgleichungen behandelt werden. Beispielsweise werden elastische Verformungen in der makroskopischen Kontinuumsmechanik mit Hilfe von Elastizitätsmodul und Poissonzahl berechnet. Treten in Festkörpern jedoch signifikante Korrelationen der Teilchen untereinander auf (zum Beispiel langreichweitige Korrelation der Atompositionen selbst ⇒ Kristallgitter, oder Korrelation der Elektronenspins → magnetische Ordnung wie Ferromagnetismus und Antiferromagnetismus), kann die Beschreibung nicht mehr in der Näherung unabhängiger Teilchen erfolgen. Es muss dann auf die Werkzeuge der Vielteilchentheorie zurückgegriffen werden.
Die Konzepte der Physik kondensierter Materie werden weit über den Bereich fester und flüssiger Materie hinaus angewandt (Beispiele: Risikomanagement, Versicherungsstatistik, neuronale Netze).

Das Zivilrecht ist ein Rechtssystem, das auf dem europäischen Festland entstand und in weiten Teilen der Welt übernommen wurde. Das Zivilrechtssystem wurde im Rahmen des römischen Rechts intellektualisiert, wobei die wichtigsten Grundsätze in einem verweisbaren System kodifiziert wurden, das als primäre Rechtsquelle dient. Das Zivilrechtssystem wird oft dem Common Law System gegenübergestellt, das seinen Ursprung im mittelalterlichen England hat. Während das Zivilrecht die Form von Gesetzbüchern annimmt, beruht das Recht in Common-Law-Systemen historisch gesehen auf nicht kodifiziertem Fallrecht, das durch Gerichtsentscheidungen entstanden ist, wobei frühere Gerichtsentscheidungen als rechtsverbindliche Präzedenzfälle anerkannt werden.
Historisch gesehen ist das Zivilrecht eine Gruppe von Rechtsvorstellungen und -systemen, die sich letztlich aus dem Corpus Juris Civilis ableiten, aber stark von napoleonischen, germanischen, kanonischen, feudalen und lokalen Praktiken sowie von Lehrmeinungen wie dem Naturrecht, der Kodifizierung und dem Rechtspositivismus überlagert werden.
民法法系(英语:Civil law),亦称欧陆法系、大陆法系、法典法系、市民法系、罗马法系或罗马-日耳曼法系,是以罗马法为基准,并与日耳曼习惯法、教会法、商法、封建法及其他习惯法结合而形成的法律体系[1],起源于欧洲大陆,与普通法系并列为当今世界上主要的两大法系之一,覆盖了当今世界的广大区域。1804年,拿破仑治下的法国发布《法国民法典》,1896年德国统一后又以此为蓝本,制定了《德国民法典》,这两部法典在民法法系内地位最为重要,影响甚广。
与世界上另一大法系普通法系相比,民法法系受罗马法影响更深,继承了更多罗马法的概念和术语。此外,民法法系更倾向于将法律编纂成册,在各法律领域发布“法典”,如“民法典”“刑法典”“民事诉讼法”“刑事诉讼法”等。民法法系中的民法典地位非常重要,规范了社会中民事主体之间的关系,一般包含了行为能力、合同法、侵权法、亲属关系、婚姻、继承等。与之相比,普通法系的法律(特别是民法)更常以单行法、特别法、判例法规定,少有抽象的、系统的民法典,但近代以来,随着民法法系和普通法系相互交流、吸收,二者的特点逐渐没有以前那般泾渭分明。
地理分布上,普通法起源于英格兰,分布在曾被英国殖民或统治的地区(如美国、加拿大、澳大利亚、印度、新加坡、香港等)。曾被欧陆国家殖民的地区(如大部分拉丁美洲、非洲国家),以及未被西方国家统治过的地区(如俄罗斯、中国、日本、台湾、韩国、泰国),则更倾向于采用民法法系[2]。
Education and Research
Education and Research
*Important disciplines
Important disciplines
Science and technology


A coordination complex is a chemical compound consisting of a central atom or ion, which is usually metallic and is called the coordination centre, and a surrounding array of bound molecules or ions, that are in turn known as ligands or complexing agents.[1][2][3] Many metal-containing compounds, especially those that include transition metals (elements like titanium that belong to the periodic table's d-block), are coordination complexes.
配位化合物(英语:coordination complex)又称配位络合物,简称配合物、络合物、复合物、络盐,是由一个中心原子或离子加上周围配置的几个结合分子或离子所组成的化合物;前者(中心)称为配位中心(英语:coordination center),通常是金属;后者(周围)则称为配体(英语:ligand)或络合剂(英语:complexing agent)[1][2][3]。配位中心与配体以配位键相结合而形成的复杂分子或离子构成一个单元,称为“配位单元”;而任何含有配位单元的化合物,都称为配位化合物[4]。研究配合物的化学分支称为配位化学。
许多含金属的化合物,特别是含有过渡金属(属于元素周期表d区的元素,例如钛)的化合物,都是配位化合物[5]。配合物是化合物中较大的一个子类别,广泛应用于日常生活、工业生产及生命科学中,近些年来的发展尤其迅速。它不仅与无机化合物、有机金属化合物相关联,并且与现今化学前沿的原子簇化学、配位催化及分子生物学都有很大的重叠。
Education and Research
Education and Research
*Important disciplines
Important disciplines
Science and technology

宇宙学或宇宙论(英语:Cosmology)[注 1],是对宇宙整体的研究,并且延伸探讨至人类在宇宙中的地位。虽然宇宙学这个词是最近才有的,但人们对宇宙的研究已经有很长的一段历史,牵涉到科学、哲学、神秘学以及宗教。
Die Kosmologie (altgriechisch κοσμολογία, kosmología, „Lehre von der Welt“) ist die Wissenschaft, die sich mit dem Universum als Ganzem beschäftigt, also vor allem dem Ursprung, der Entwicklung und der grundlegenden Struktur des Kosmos. Sie ist ein Teilgebiet der Astronomie[1], das in enger Beziehung zur Astrophysik steht.
Die heutige Kosmologie beschreibt das Universum durch Anwendung physikalischer Theorien, wobei für die großen Skalen insbesondere die Allgemeine Relativitätstheorie wichtig ist, für die kleinsten die Quantenphysik. Allgemein anerkannt wird, dass das Universum zu einem Zeitpunkt vor etwa 13,75 Milliarden Jahren extrem dicht und heiß war, daraufhin wuchs und sich so zu seinem derzeit beobachteten Zustand entwickelte. Für den Extremzustand im sehr frühen Universum sind die bekannten physikalischen Theorien allerdings nicht mehr gültig – insbesondere fehlt eine gültige Theorie der Quantengravitation. Die damaligen Ereignisse sind derzeitigen Theorien also noch nicht zugänglich. Aus dem aktuellen Standardmodell für die Entwicklung des Universums (Lambda-CDM-Modell) wird häufig geschlossen, dass das Universum damals in einer Singularität begonnen habe, dem sogenannten Urknall.
Ausgangspunkt der Modellbildung sind astronomische Beobachtungen der Verteilung und der Eigenschaften von Galaxien im Universum. Zu den kosmologisch relevanten messbaren Gegenständen gehören die Häufigkeiten der durch die primordiale Nukleosynthese entstandenen leichtesten Elemente (Wasserstoff, Helium und Lithium) sowie die kosmische Hintergrundstrahlung, die etwa 380.000 Jahre nach dem Urknall freigesetzt wurde, als die Temperatur des sich ausdehnenden Universums so weit abgesunken war, dass neutrale Atome existieren konnten. In der weiteren Folge entwickelte sich aus kleinen Dichtefluktuationen durch die Wirkung der Gravitation die großräumige Verteilung der Galaxien und Galaxienhaufen, die durch Klumpung, Filamente und dazwischenliegende Leerräume (Voids) charakterisiert ist und auf größten Skalen zunehmend homogen wird. Die Kosmologie erfasst außerdem die großskalig gemessen geringe Krümmung des Raumes, dazu die raumzeitliche Isotropie und Homogenität des Kosmos im Ganzen,[2][3][4] die numerischen Werte der Naturkonstanten und die Häufigkeitsverteilung der chemischen Elemente.
Wichtige Instrumente zur Erforschung des Universums werden heute von Satelliten und Raumsonden getragen, bspw. das James-Webb-Weltraumteleskop, Hubble, Chandra, Gaia und Planck.

Kriminologie (zusammengesetzt aus lateinisch crimen ‚Verbrechen‘ und -logie von dem griechischen und lateinischen Wort -logia; von altgr. λόγος lógos, ‚Wort‘, auch: ‚Lehre‘,) bedeutet wörtlich übersetzt Lehre vom Verbrechen. Die Kriminologie bedient sich verschiedener Bezugswissenschaften wie Rechtswissenschaften und Psychiatrie, Soziologie und Pädagogik, Psychologie, Ethnologie und Anthropologie, sowie in den letzten Jahrzehnten verstärkt der Wirtschaftswissenschaft, um die Erscheinungsformen der Kriminalität zu beschreiben bzw. zu untersuchen.
In Deutschland ist die universitäre Kriminologie weitgehend den rechtswissenschaftlichen Fakultäten angegliedert. In angloamerikanischen und skandinavischen Ländern sind Kriminologen dagegen überwiegend den sozialwissenschaftlichen Fachbereichen zugeordnet.
Kriminologie ist von der Kriminalistik, der Lehre von den Mitteln und Methoden der Verbrechensbekämpfung, abzugrenzen.
犯罪学(英语:Criminology)是一门社会科学,主题是寻找犯罪行为的现象与规律,寻找犯罪发生的原因,借此寻找方法以减轻犯罪对社会的影响(最后这项于今日已被更精致地分科为刑事政策,而与犯罪学同属刑事学的分支学门)。除了针对犯罪人以外,犯罪学研究也会调查社会与政府对犯罪的认定标准和反应,以及研究如何改善被害人的处境。
在研究方法上,当世的犯罪学特别着重于应用社会学、心理学和经济学的理论及研究方法来观察和了解犯罪现象、成因。此外,随着大脑神经科学和基因的研究兴盛,这两种领域的观点也越来越受犯罪学的欢迎。

晶体学,又称结晶学(英语:Crystallography),是一门以确定固体中原子(或离子)排列方式为目的的实验科学。“晶体学”一词原先仅指对各种晶体性质的研究,但随着人们对微观尺度上的认识加深,其词义已大大扩充。
在X射线衍射晶体学提出之前(介绍见下文),人们对晶体的研究主要集中于晶体的点阵几何上,包括测量各晶面相对于理论参考坐标系(晶体坐标轴)的夹角,以及建立晶体点阵的对称关系等。夹角的测量用测角仪完成。每个晶面在三维空间中的位置用它们在一个立体球面坐标“网”上的投影点(一般称为投影“极”)表示。坐标网的又根据不同取法分为Wolff网和Lambert网。将一个晶体的各个晶面对应的极点在坐标网上画出,并标出晶面相应的密勒指数,最终便可确定晶体的对称性关系。
现代晶体学研究主要通过分析晶体对各种电磁波束或粒子束的衍射图像来进行。辐射源除了最常用的X射线外,还包括电子束和中子束(根据德布罗意理论,这些基本粒子都具有波动性,参见条目波粒二象性),可以表现出和光波类似的性质)。晶体学家直接用辐射源的名字命名各种标定方法,如X射线衍射(常用英文缩写XRD),中子衍射和电子衍射。
以上三种辐射源与晶体学试样的作用方式有很大区别:X射线主要被原子(或离子)的最外层价电子所散射;电子由于带负电,会与包括原子核和核外电子在内的整个空间电荷分布场发生相互作用;中子不带电且质量较大,主要在与原子核发生碰撞时(碰撞的概率非常低)受到来自原子核的作用力;与此同时,由于中子自身的自旋磁矩不为零,它还会与原子(或离子)磁场相互作用。这三种不同的作用方式适应晶体学中不同方面的研究。
Education and Research
Education and Research
*Important disciplines
Important disciplines
Science and technology

Kryptographie bzw. Kryptografie (altgriechisch κρυπτός kryptós, deutsch ‚verborgen‘, ‚geheim‘ und γράφειν gráphein, deutsch ‚schreiben‘)[1] ist ursprünglich die Wissenschaft der Verschlüsselung von Informationen. Heute befasst sie sich auch allgemein mit dem Thema Informationssicherheit, also der Konzeption, Definition und Konstruktion von Informationssystemen, die widerstandsfähig gegen Manipulation und unbefugtes Lesen sind.
密码学(英语:Cryptography)可分为古典密码学和现代密码学。在西方语文中,密码学一词源于希腊语kryptós“隐藏的”,和gráphein“书写”。古典密码学主要关注信息的保密书写和传递,以及与其相对应的破译方法。而现代密码学不只关注信息保密问题,还同时涉及信息完整性验证(消息验证码)、信息发布的不可抵赖性(数字签名)、以及在分布式计算中产生的来源于内部和外部的攻击的所有信息安全问题。古典密码学与现代密码学的重要区别在于,古典密码学的编码和破译通常依赖于设计者和敌手的创造力与技巧,作为一种实用性艺术存在,并没有对于密码学原件的清晰定义。而现代密码学则起源于20世纪末出现的大量相关理论,这些理论使得现代密码学成为了一种可以系统而严格地学习的科学。
密码学是数学和计算机科学的分支,同时其原理大量涉及信息论。著名的密码学者罗纳德·李维斯特解释道:“密码学是关于如何在敌人存在的环境中通信”,自工程学的角度,这相当于密码学与纯数学的差异。密码学的发展促进了计算机科学,特别是在于电脑与网络安全所使用的技术,如访问控制与信息的机密性。密码学已被应用在日常生活:包括自动柜员机的芯片卡、电脑用户访问密码、电子商务等等。


Die Kunstgeschichte oder Kunstwissenschaft, veraltet auch Kunsthistorik, ist eine geisteswissenschaftliche Disziplin, die Architektur, Bildkünste und -medien sowie kunsthandwerkliche Objekte einschließlich ihrer Theorien und Praktiken vom Mittelalter bis in die Gegenwart untersucht. Das Spektrum des kunsthistorischen bzw. kunstwissenschaftlichen Arbeitens reicht von formalen und ikonographischen, stilistischen und materiellen Analysen über entwurfstheoretische, kunstpraktische und rezeptionsästhetische Untersuchungen bis hin zu sozialen, politischen und gesellschaftlichen Interpretationen von Kunst und Architektur in ihren lokalen, regionalen und globalen Zusammenhängen.
美术史是有关美术作品的历史发展及其风格的研究,风格可能包括其艺术类型、设计、形式及风格等[1]。它也研究和描述美术在其当时和当地的美术感和世界观条件下的文化作用以及艺术家的创作过程。美术史一般研究的对象会包括绘画、雕塑及建筑,也会包括陶瓷、家具及其他装饰艺术。
Education and Research
Education and Research
*Important disciplines
History
N 2000 - 2100 AD
IT-Times
Big Data
IT-Times
Cloud Computing
Important disciplines
Science and technology
Technology concepts

Künstliche Intelligenz (KI, auch artifizielle Intelligenz, AI, A. I., englisch artificial intelligence, AI) ist ein Teilgebiet der Informatik, welches sich mit der Automatisierung intelligenten Verhaltens befasst. Der Begriff ist insofern nicht eindeutig abgrenzbar, als es bereits an einer genauen Definition von Intelligenz mangelt. Dennoch wird er in Forschung und Entwicklung verwendet.
Im Allgemeinen bezeichnet künstliche Intelligenz oder KI den Versuch, eine menschenähnliche Intelligenz nachzubilden, d. h., einen Computer zu bauen oder so zu programmieren, dass er eigenständig Probleme bearbeiten kann. Oftmals wird damit aber auch, besonders bei Computerspielen, eine nachgeahmte Intelligenz bezeichnet, womit durch meist einfache Algorithmen ein intelligentes Verhalten simuliert werden soll.
人工智能(英语:Artificial Intelligence, AI)亦称机器智能,是指由人工制造出来的系统所表现出来的智能。通常人工智能是指通过普通电脑实现的智能。该词同时也指研究这样的智能系统是否能够实现,以及如何实现的科学领域。
一般教材中的定义领域是“智能主体(intelligent agent)的研究与设计”[1],智能主体是指一个可以观察周遭环境并作出行动以达致目标的系统。[2]约翰·麦卡锡于1955年的定义是[3]“制造智能机器的科学与工程。”[4]
人工智能的研究是高度技术性和专业的,各分支领域都是深入且各不相通的,因而涉及范围极广。[5]
人工智能的研究可以分为几个技术问题。其分支领域主要集中在解决具体问题,其中之一是,如何使用各种不同的工具完成特定的应用程序。AI的核心问题包括推理、知识、规划、学习、交流、感知、移动和操作物体的能力等。[6]强人工智能目前仍然是该领域的长远目标。[7]目前比较流行的方法包括统计方法,计算智能和传统意义的AI。目前有大量的工具应用了人工智能,其中包括搜索和数学优化、逻辑推演。而基于仿生学、认知心理学,以及基于概率论和经济学的算法等等也在逐步探索当中。
Law
Astronomy
Art