
漢德百科全書 | 汉德百科全书
教育和研究

共价有机框架材料或共价有机骨架材料(英语:Covalent Organic Frameworks,缩写:COFs)是在其延展结构中具有通过强共价键结合的构建单元的二维或三维的有机固体。[1]共价有机框架材料是完全由轻元素(氢、硼、碳、氮和氧)[2]组成的多孔的晶体结构。众所周知,这些轻元素能够形成很强的共价键,成为有用的材料如金刚石、石墨和氮化硼。由分子构建单元制备的共价有机框架材料提供的共价框架,将被用于制造具有多种应用的轻质材料。
Covalent organic frameworks (COFs) are a class of porous polymers that form two- or three-dimensional structures through reactions between organic precursors resulting in strong, covalent bonds to afford porous, stable, and crystalline materials. COFs emerged as a field from the overarching domain of organic materials as researchers optimized both synthetic control and precursor selection.[1] These improvements to coordination chemistry enabled non-porous and amorphous organic materials such as organic polymers to advance into the construction of porous, crystalline materials with rigid structures that granted exceptional material stability in a wide range of solvents and conditions.[1][2] Through the development of reticular chemistry, precise synthetic control was achieved and resulted in ordered, nano-porous structures with highly preferential structural orientation and properties which could be synergistically enhanced and amplified.[3] With judicious selection of COF secondary building units (SBUs), or precursors, the final structure could be predetermined, and modified with exceptional control enabling fine-tuning of emergent properties.[4] This level of control facilitates the COF material to be designed, synthesized, and utilized in various applications, many times with metrics on scale or surpassing that of the current state-of-the-art approaches. COFs are classified as reticular materials.

构造地质学(英語:Structural geology)是地质学的一门分支,主要是研究岩石的构造形态、空间分布和形成原因,从而揭示地壳运动的规律。其研究成果广泛应用于区域地质调查、资源勘探等领域。结构地质学的主要目标是使用当今岩石几何形状的测量数据揭示岩石中变形(形变)的历史信息,并最终理解导致观察到的应变和几何形状的应力场。 这种对应力场动力学的理解可以与地质历史上的重要事件联系起来; 一个共同的目标是了解由于板块构造所造成的区域性岩石变形模式(例如,造山运动,裂谷)的特定区域的结构演变。
Strukturgeologie (lat. structura ‚Bau‘) ist die Lehre vom Bau der Erdkruste, ein Zweig der analytischen Tektonik. Sie befasst sich mit den räumlichen Beziehungen der Gesteine zueinander und den in ihnen erkennbaren Deformationen.
Die moderne Tektonik unterscheidet:
- Strukturgeologie: sie untersucht analytisch räumliche Beziehungen im Bau der Erde (z. B. Falten, Brüche und Mineralgefüge in Gesteinen) in lokalem und regionalem Maßstab
- Geodynamik: sie befasst sich mit globalen tektonischen Zusammenhängen („Großtektonik“, siehe auch Gebirgsbildung oder Plattentektonik)[1]

Die Paläontologie (altgriechisch παλαιός palaiós „alt“, ὤν ōn, Gen. ὄντος óntos „seiend“ und -logie) ist die Wissenschaft von den Lebewesen und Lebewelten der geologischen Vergangenheit. Gegenstand paläontologischer Forschung sind Fossilien (lateinisch fossilis „ausgegraben“), das heißt, in Sedimentgesteinen vorkommende körperliche Überreste sowie sonstige Hinterlassenschaften und Zeugnisse von Lebewesen, die älter als 10.000 Jahre sind.
Der französische Zoologe und Anatom Henri de Blainville führte 1825 den Begriff Paläontologie ein, der allmählich die älteren Bezeichnungen Oryktologie (griechisch ὀρυκτός oryktós „ausgegraben“) und Petrefaktenkunde (lateinisch petrefactum „versteinert“) ersetzte.
古生物学是研究古地质时代中的生物及其发展的科学。它是生物学和地质学的交叉科学[1][2]。既是生命科学中唯一具有历史科学性质的时间尺度的一个独特分支,研究生命起源、发展历史、生物宏观进化模型、节奏与作用机制等历史生物学的重要基础和组成部分;又是地球科学的一个分支,研究保存在地层中的生物遗体、遗迹、化石,用以确定地层的顺序、时代,了解地壳发展的历史,推断地质史上水陆分布、气候变迁和沉积矿产形成与分布的规律。

Die Archäogenetik befasst sich mit der Untersuchung von Erbmaterial der Menschen sowie der Tiere und Pflanzen, um Erkenntnisse über die Evolution zu gewinnen.[1] Es werden dabei Proben von Kulturpflanzen, Haustieren und Menschen berücksichtigt, die sowohl aus alter DNA von archäologischen Funden als auch von Lebewesen und Pflanzen heutiger Zeit stammen. Mit den Mitteln der Molekularbiologie lassen sich zum Beispiel vorgeschichtliche Vorgänge wie die Entstehung und Verbreitung der Landwirtschaft rekonstruieren. Geprägt wurde der Begriff Archäogenetik (Archaeogenetics) von Colin Renfrew.
古遗传学,是科林·伦弗鲁提出的一个术语,指的是利用分子技术中的应用人类基因技术来研究人类的过去。 这可以包括:
- 分析从考古遗留的DNA,比如古DNA。
- 从现代人群(包括人类和人类种植的植物和饲养的动物物种)来研究过去的人类和人类与生物交互所遗留的DNA
- 在考古资料上应用通过分子基因法研究出的统计方法。
这个主题有研究人类血液的起源,而这个经典的遗传标记实现了有关语言学和人类种族之间关系的信息。早期工作在这个领域包含了对卢德维克登、汉卡、威廉·博伊德和亚瑟。自20世纪60年代起,卢卡·卡瓦利-斯福扎用经典遗传标记,研究史前的欧洲人群,最终于1994年发表在人类基因的历史和地理。
自此,所有的人类种植的主要植物(如小麦,大米,玉米)和饲养的动物(如牛,羊,猪,马)的遗传史都被进行了分析。模型的时机和生物地理学他们的驯化和饲养随后陆续出台,主要是基于线粒体DNA变异,但其他标志物,目前正在分析,以补充遗传的叙述(如Y染色体用于描述男性的历史传承)。
同样的表达也被安东尼奥·阿莫林(1999年)使用并定义为:获取和解读基因来证明人类的历史。类似概念已经提出,莱纳斯·鲍林和埃米尔(1963年)研究了前DNA的时代。

固体力学是力学中研究固体机械性质的学科,连续介质力学组成部分之一,主要研究固体介质在温度、形变和外力的作用下的表现,是连续介质力学的一个分支。一般包括材料力学、弹性力学、塑性力学等部分。固体力学广泛的应用张量来描述应力、应变和它们之间的关系。
在固体力学中,线性材料模型的应用是最为广泛的,但是很多材料是具有非线性特性的,随着新材料的应用和原有材料达到它们应用之极限,非线性模型的应用愈加广泛。
- 塑性——如果施加的应力小于实际的结果,材料便呈现塑性,不能回复到初始状态。也就是说屈服之后的形变是永久性的。
- 弹性——当应力被移除后,材料恢复到变形前的状态。线性弹性材料的形变与外加的载荷成正比,此关系可以用线性弹性方程,例如:胡克定律,表示出来。
- 黏弹性——材料不仅具有弹性,而且具有摩擦。当应力被移除后,一部分功被用于摩擦效应而被转化成热能,这一过程可用应力应变曲线表示。
Die Mechanik fester Körper ist ein grundlegendes Teilgebiet der klassischen Mechanik, der Kontinuumsmechanik und der Experimentalphysik. Sie befasst sich mit der Bewegung von Festkörpern unter dem Einfluss äußerer Kräfte. Zu unterscheiden sind:
- der Idealfall nicht verformbarer, gänzlich starrer Körper. Zur Untersuchung werden diese mathematisch aus Massepunkten zusammengesetzt; die untersuchten Bewegungen sind vor allem Translationsbewegungen und Rotationen.
- die realen, elastisch oder plastisch verformbaren Festkörper. Hier kommt die Analyse von Schwingungen, Durchbiegungen und Verformungen hinzu.
Die Mechanik fester Körper, als dessen Gegenstück die Mechanik der Fluide gelten kann, stellt die allgemeine Grundlage der Physik dar und bildet daher fast immer den Beginn physikalischer Studienbücher und Vorlesungsreihen.
Mechanik fester Körper ist dementsprechend auch der Titel mehrerer Lehrbücher, die seit Beginn des 20. Jahrhunderts publiziert wurden. Zu den bekanntesten Autoren zählen Heinz Parkus (TU Wien) und Siegfried Heitz (Universität Bonn).
Die meisten Lehrbücher gliedern das Fachgebiet in die Bereiche
- Statik (u. a. Bezugs- und Kraftsysteme, Massengeometrie, Gleichgewicht, stabförmige Festkörper, Fachwerke, Reibungsgesetze),[1]
- Festigkeitslehre (Zug- und Biegeversuche, Spannungsverteilung, Biegelinie, Torsion; Elastizitätstheorie, Plastizität, Rheologie, Härte, Dichte, Baumechanik[1] usw.),
- Kinematik und Dynamik (Winkel- bzw. Geschwindigkeitsvektor, Beschleunigung, Ruck, Momente usw., Kinetische Grundgleichung, Schwerpunkt- und Drallsatz, Keplersche und Fallgesetze, Eulersche Kreiseltheorie usw.; Gravitation, Arbeit, Leistung, Bewegungsenergie, Schwingungen, Stoßvorgänge).

固体物理学是凝聚态物理学中最大的分支。它研究的对象是固体,特别是原子排列具有周期性结构的晶体。固体物理学的基本任务是从微观上解释固体材料的宏观物理性质,主要理论基础是非相对论性的量子力学,还会使用到电动力学、统计物理中的理论。主要方法是应用薛定谔方程来描述固体物质的电子态,并使用布洛赫波函数表达晶体周期性势场中的电子态。在此基础上,发展了固体的能带论,预言了半导体的存在,并且为晶体管的制造提供理论基础。
Die Festkörperphysik (häufig abgekürzt: FKP) befasst sich mit der Physik von Materie im festen Aggregatzustand. Sie gehört thematisch zur Physik der kondensierten Materie und umgekehrt.[1] Von besonderer Bedeutung sind dabei kristalline Festkörper. Das sind solche, die einen translationssymmetrischen (periodischen) Aufbau aufweisen, da diese Translationssymmetrie die physikalische Behandlung vieler Phänomene drastisch vereinfacht oder erst ermöglicht. Daher erfolgt die Anwendung des Modells des idealen Kristallgitters häufig auch dann, wenn die Bedingung der Periodizität nur sehr eingeschränkt, zum Beispiel nur sehr lokal erfüllt ist. Die Abweichung von der strengen Periodizität wird dann durch Korrekturen berücksichtigt.

Management (['mænɪdʒmənt]; lateinisch manus, „Hand“ und lateinisch agere, „führen“, „an der Hand führen“; deutsch „Führung“) ist ein Anglizismus für jede zielgerichtete und nach ökonomischen Prinzipien ausgerichtete menschliche Handlungsweise der Leitung, Organisation und Planung in allen Lebensbereichen.
管理学是研究人类管理活动及其应用的科学。它偏重于用一些工具和方法来解决管理上的问题,如用运筹学、统计学等来定量定性分析。管理的定义为管理者和他人及透过他人有效率且有效能地完成活动的程序。[1]以前管理学主要用运筹学来解决管理中碰到的问题。

光谱学(英语:Spectroscopy)是利用物质发射、吸收或散射的光、声或粒子的现象,来研究物质或能量的方法。又称谱学,且因研究对象不同,而有不同名称,例如:能谱学、波谱学、频谱学、质谱学(mass spectroscopy/spectrometry)、介电谱学(dielectric spectroscopy)。
|
|
||
|---|---|---|
| 颜色 | 频率 | 波长 |
| 紫色 | 668–789THz | 380–450nm |
| 蓝色 | 631–668THz | 450–475nm |
| 青色 | 606–630THz | 476–495nm |
| 绿色 | 526–606THz | 495–570nm |
| 黄色 | 508–526THz | 570–590nm |
| 橙色 | 484–508THz | 590–620nm |
| 红色 | 400–484THz | 620–750nm |
光谱学原始定义为研究光和物质之间相互作用的学科。历史上,光谱学是指:用“可见光”来对物质结构的理论研究、进而对物质定性定量分析的科学分支。但是,近来,光谱学的定义已经被扩展为:一种不只用可见光,也用许多“其他电磁或非电磁辐射”(如微波,无线电波,X射线,电子,声子(声波)等)的新技术。阻抗光谱学则研究交流电的频率响应。
光谱学被频繁的用在物理和分析化学中,通过发射或吸收光谱来鉴定物质。一种记录光谱的仪器叫分光计。光谱学可以通过其测量或计算的物理属性或测量过程来分类。
光谱学也同样大量运用在天文学和遥感。大多数大型天文望远镜配有光谱摄制仪,用来测量天体的化学组成和物理属性,或通过测量光谱线的多普勒偏移来测量天体的速度。
重要学科

科学技术


