Deutsch-Chinesische Enzyklopädie, 德汉百科
       
German — Chinese
Maschinelles Lernen Deutscher Wortschatz
  1 1 year ago
機器學習 机器学习/Machine learning
Maschinelles Lernen (ML) ist ein Oberbegriff für die „künstliche“ Generierung von Wissen aus Erfahrung: Ein künstliches System lernt aus Beispielen und kann diese nach Beendigung der Lernphase verallgemeinern. Dazu bauen Algorithmen beim maschinellen Lernen ein statistisches Modell auf, das auf Trainingsdaten beruht und welches gegen die Testdaten getestet wird.

Maschinelles Lernen (ML) ist ein Oberbegriff für die „künstliche“ Generierung von Wissen aus Erfahrung: Ein künstliches System lernt aus Beispielen und kann diese nach Beendigung der Lernphase verallgemeinern. Dazu bauen Algorithmen beim maschinellen Lernen ein statistisches Modell auf, das auf Trainingsdaten beruht und welches gegen die Testdaten getestet wird. Das heißt, es werden nicht einfach die Beispiele auswendig gelernt (siehe Überanpassung), sondern Muster und Gesetzmäßigkeiten in den Lerndaten erkannt. So kann das System auch unbekannte Daten beurteilen (Lerntransfer) oder aber am Lernen unbekannter Daten scheitern (Überanpassungenglisch overfitting).[1][2] Aus dem weiten Spektrum möglicher Anwendungen seien hier genannt: automatisierte Diagnose­verfahren, Erkennung von KreditkartenbetrugAktienmarkt­analysen, Klassifikation von NukleotidsequenzenSprach- und Texterkennung sowie autonome Systeme.

Das Thema ist eng verwandt mit „Knowledge Discovery in Databases“ und „Data-Mining“, bei dem es jedoch vorwiegend um das Finden von neuen Mustern und Gesetzmäßigkeiten geht. Viele Algorithmen können für beide Zwecke verwendet werden. Methoden der „Knowledge Discovery in Databases“ können genutzt werden, um Lerndaten für „maschinelles Lernen“ zu produzieren oder vorzuverarbeiten. Im Gegenzug dazu finden Algorithmen aus dem maschinellen Lernen beim Data-Mining Anwendung. Zu unterscheiden ist der Begriff zudem von dem Begriff „Deep Learning“, welches nur eine mögliche Lernvariante mittels künstlicher neuronaler Netze darstellt.

Das Schließen von Daten auf (hypothetische) Modelle wird als Statistische Inferenz bezeichnet.

机器学习人工智能的一个分支。人工智能的研究历史有着一条从以“推理”为重点,到以“知识”为重点,再到以“学习”为重点的自然、清晰的脉络。显然,机器学习是实现人工智能的一个途径之一,即以机器学习为手段,解决人工智能中的部分问题。机器学习在近30多年已发展为一门多领域科际集成,涉及概率论统计学逼近论凸分析计算复杂性理论等多门学科。

机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法(要防止错误累积)。很多推论问题属于非程序化決策,所以部分的机器学习研究是开发容易处理的近似算法。

机器学习已广泛应用于数据挖掘计算机视觉自然语言处理生物特征识别搜索引擎医学诊断、检测信用卡欺诈证券市场分析、DNA序列测序、语音手写识别、游戏机器人等领域。

This image, video or audio may be copyrighted. It is used for educational purposes only. If you find it, please notify us byand we will remove it immediately.