German — Chinese
广义的组合数学(英语:Combinatorics)相当于离散数学,狭义的组合数学是组合计数、图论、代数结构、数理逻辑等的总称。但这只是不同学者在叫法上的区别。总之,组合数学是一门研究可数或离散对象的科学。随着计算机科学日益发展,组合数学的重要性也日渐凸显,因为计算机科学的核心内容是使用算法处理离散数据。
狭义的组合数学主要研究满足一定条件的组态(也称组合模型)的存在、计数以及构造等方面的问题。组合数学的主要内容有组合计数、组合设计(Combinatorial design)、组合矩阵(Combinatorial matrix theory)、组合最佳化(最佳组合)等。
Die Kombinatorik ist eine Teildisziplin der Mathematik, die sich mit endlichen oder abzählbar unendlichen diskreten Strukturen beschäftigt und deshalb auch dem Oberbegriff Diskrete Mathematik zugerechnet wird. Beispiele sind Graphen (Graphentheorie), teilgeordnete Mengen wie Verbände, Matroide, kombinatorische Designs, lateinische Quadrate, Parkettierungen, Permutationen von Objekten, Partitionen. Die Abgrenzung zu anderen Teilgebieten der Diskreten Mathematik ist fließend. Eine Definition von George Pólya bezeichnet die Kombinatorik als Untersuchung des Abzählens, der Existenz und Konstruktion von Konfigurationen.[1]
Je nach den verwendeten Methoden und Gegenständen unterscheidet man auch Teildisziplinen wie algebraische Kombinatorik, analytische Kombinatorik, geometrische und topologische Kombinatorik, probabilistische Kombinatorik, Kombinatorische Spieltheorie, Ramseytheorie. Speziell mit der Optimierung diskreter Strukturen beschäftigt sich die kombinatorische Optimierung.