Deutsch-Chinesische Enzyklopädie, 德汉百科

       
德语 — 汉语
科学技术 概念技术

互联网医院/Internet-Krankenhaus
此图片/视频/音频可能受版权保护,它仅用于教学目的。如果您发现了不妥之处请用通知我们,我们将马上删除它。
碳纤维/Carbon fiber
/assets/contentimages/Kohlenstofffaser.jpg
此图片/视频/音频可能受版权保护,它仅用于教学目的。如果您发现了不妥之处请用通知我们,我们将马上删除它。
可控核聚变/Controlled nuclear fusion/人造太阳
/assets/contentimages/Controlled_nuclear_fusion.jpg
此图片/视频/音频可能受版权保护,它仅用于教学目的。如果您发现了不妥之处请用通知我们,我们将马上删除它。
人工智能/artificial intelligence
Künstliche Intelligenz ist ein Teilgebiet der Informatik, es umfasst alle Anstrengungen, deren Ziel es ist, Maschinen intelligent zu machen. Dabei wird Intelligenz verstanden als die Eigenschaft, die ein Wesen befähigt, angemessen und vorausschauend in seiner Umgebung zu agieren; dazu gehört die Fähigkeit, Sinneseindrücke wahrzunehmen und darauf zu reagieren, Informationen aufzunehmen, zu verarbeiten und als Wissen zu speichern, Sprache zu verstehen und zu erzeugen, Probleme zu lösen und Ziele z
http://www.net4info.de/photos/cpg/albums/userpics/10001/Kuenstliche_Intelligenz.jpg

Künstliche Intelligenz (KI, auch artifizielle Intelligenz, AI, A. I., englisch artificial intelligence, AI) ist ein Teilgebiet der Informatik, welches sich mit der Automatisierung intelligenten Verhaltens befasst. Der Begriff ist insofern nicht eindeutig abgrenzbar, als es bereits an einer genauen Definition von Intelligenz mangelt. Dennoch wird er in Forschung und Entwicklung verwendet.

Im Allgemeinen bezeichnet künstliche Intelligenz oder KI den Versuch, eine menschenähnliche Intelligenz nachzubilden, d. h., einen Computer zu bauen oder so zu programmieren, dass er eigenständig Probleme bearbeiten kann. Oftmals wird damit aber auch, besonders bei Computerspielen, eine nachgeahmte Intelligenz bezeichnet, womit durch meist einfache Algorithmen ein intelligentes Verhalten simuliert werden soll.

人工智能英语:Artificial Intelligence, AI)亦称机器智能,是指由人工制造出来的系统所表现出来的智能。通常人工智能是指通过普通电脑实现的智能。该词同时也指研究这样的智能系统是否能够实现,以及如何实现的科学领域。

一般教材中的定义领域是“智能主体(intelligent agent)的研究与设计”[1],智能主体是指一个可以观察周遭环境并作出行动以达致目标的系统。[2]约翰·麦卡锡于1955年的定义是[3]“制造智能机器的科学与工程。”[4]

人工智能的研究是高度技术性和专业的,各分支领域都是深入且各不相通的,因而涉及范围极广。[5]

人工智能的研究可以分为几个技术问题。其分支领域主要集中在解决具体问题,其中之一是,如何使用各种不同的工具完成特定的应用程序。AI的核心问题包括推理、知识、规划、学习、交流、感知、移动和操作物体的能力等。[6]强人工智能目前仍然是该领域的长远目标。[7]目前比较流行的方法包括统计方法,计算智能和传统意义的AI。目前有大量的工具应用了人工智能,其中包括搜索和数学优化、逻辑推演。而基于仿生学认知心理学,以及基于概率论和经济学的算法等等也在逐步探索当中。

此图片/视频/音频可能受版权保护,它仅用于教学目的。如果您发现了不妥之处请用通知我们,我们将马上删除它。
大型强子对撞机/Großer Hadronen-Speicherring
/assets/contentimages/Large_Hadron_Collider2CLHC.jpg

大型强子对撞机(英语:Large Hadron Collider缩写LHC)是一座位于瑞士日内瓦近郊欧洲核子研究组织的对撞型粒子加速器,作为国际高能物理学研究之用。LHC已经建造完成,2008年9月10日开始试运转,并且成功地维持了两质子束在轨道中运行,成为世界上最大的粒子加速器设施。大型强子对撞机是一个国际合作计划,由全球85国中的多个大学与研究机构,逾8,000位物理学家合作兴建,经费一部分来自欧洲核子研究组织会员国提供的年度预算,以及参与实验的研究机构所提拨的资金。

大型强子对撞机原计划于2008年正式运行,但因设备故障延迟。2009年11月23日,大型强子对撞机进行了在修复完成后的第一次试撞[1]。2015年4月5日,经过两年的维护与升级,大型强子对撞机再度启动,计划于该年夏天进行13TeV质子质子碰撞实验,探索未知领域,例如,寻找暗物质、分析希格斯机制、研究夸克-胶子等离子体等等[2]

Der Large Hadron Collider (LHC, deutsche Bezeichnung Großer Hadronen-Speicherring)[1] ist ein Teilchenbeschleuniger am Europäischen Kernforschungszentrum CERN bei Genf. In Bezug auf Energie und Häufigkeit der Teilchenkollisionen ist der LHC der leistungsstärkste Teilchenbeschleuniger der Welt. An Planung und Bau waren über 10.000 Wissenschaftler und Techniker aus über 100 Staaten beteiligt, es kooperierten hunderte Universitätslehrstühle und Forschungsinstitute. Die maßgebliche Komponente ist ein Synchrotron in einem 26,7 Kilometer langen unterirdischen Ringtunnel, in dem Protonen oder Blei-Kerne gegenläufig auf nahezu Lichtgeschwindigkeit beschleunigt und zur Kollision gebracht werden. Die Experimente am LHC sind daher Colliding-Beam-Experimente.

Forschungsziele am LHC sind die Erzeugung und genaue Untersuchung bekannter und noch unbekannter Elementarteilchen und Materiezustände. Ausgangspunkt ist die Überprüfung des gegenwärtigen Standardmodells der Teilchenphysik. Besonderes Augenmerk liegt daher auf dem Higgs-Boson, dem letzten bei Betriebsbeginn noch nicht experimentell nachgewiesenen Teilchen des Standardmodells. Darüber hinaus soll der LHC der Suche nach Physik jenseits des Standardmodells dienen, um möglicherweise Antworten auf offene Fragen zu finden. Vier große und zwei kleinere Detektoren registrieren die Spuren der bei den Kollisionen entstandenen Partikel. Durch die große erreichbare Anzahl von Kollisionen pro Sekunde (hohe Luminosität) entstehen enorme Datenmengen. Diese werden mit Hilfe einer ausgeklügelten IT-Infrastruktur vorsortiert. Nur ein kleiner Teil der Daten wird mittels eines eigens aufgebauten, weltumspannenden Computernetzwerks zur Analyse an die beteiligten Institute weitergeleitet.

In den Experimenten wurde ab 2010 ein bisher nicht erreichbarer Energiebereich erschlossen. Ein wesentliches Ergebnis der bisherigen Experimente (Stand: März 2019) ist eine außerordentlich gute Bestätigung des Standardmodells. Mehrere neue Hadronen wurden gefunden, ein Quark-Gluon-Plasma konnte erzeugt werden und erstmals wurde beim Bs0-Meson die CP-Verletzung bei seinem Zerfall in Kaonen und Pionen beobachtet sowie sein extrem seltener Zerfall in zwei Myonen. Auch beim D0-Meson gelang der Nachweis einer CP-Verletzung. Als bislang größter Erfolg gilt der experimentelle Nachweis des Higgs-Bosons. Dies führte zur Verleihung des Nobelpreises für Physik 2013 an François Englert und Peter Higgs.[2]

大型ハドロン衝突型加速器 (おおがたハドロンしょうとつがたかそくき、: Large Hadron Collider、略称 LHC) は、高エネルギー物理実験を目的としてCERNが建設した世界最大の衝突型円形加速器の名称。スイスジュネーブ郊外にフランスとの国境をまたいで設置されている[1]2008年9月10日[2]に稼動開始した[3]。また、LHC実験はそこで実施されている実験の総称。

LHCは2013年2月から停止していたが、2015年4月5日に改良工事を終え、以前の8兆電子ボルト(8TeV)から13兆電子ボルト(13TeV)の高速エネルギーへ更新して運転を再開した [4]。 13TeVの衝突が2015年5月20日に初めて達成された [5]

The Large Hadron Collider (LHC) is the world's largest and highest-energy particle collider and the largest machine in the world.[1][2] It was built by the European Organization for Nuclear Research (CERN) between 1998 and 2008 in collaboration with over 10,000 scientists and hundreds of universities and laboratories, as well as more than 100 countries.[3] It lies in a tunnel 27 kilometres (17 mi) in circumference and as deep as 175 metres (574 ft) beneath the France–Switzerland border near Geneva.

First collisions were achieved in 2010 at an energy of 3.5 teraelectronvolts (TeV) per beam, about four times the previous world record.[4][5] After upgrades it reached 6.5 TeV per beam (13 TeV total collision energy, the present world record).[6][7][8][9] At the end of 2018, it entered a two-year shutdown period for further upgrades.

The collider has four crossing points, around which are positioned seven detectors, each designed for certain kinds of research. The LHC primarily collides proton beams, but it can also use beams of heavy ions: lead–lead collisions and proton–lead collisions are typically done for one month per year. The aim of the LHC's detectors is to allow physicists to test the predictions of different theories of particle physics, including measuring the properties of the Higgs boson[10] and searching for the large family of new particles predicted by supersymmetric theories,[11] as well as other unsolved questions of physics.

Le Grand collisionneur de hadrons1, (en anglais : Large Hadron ColliderLHC), est un accélérateur de particules mis en fonction en 2008 et situé dans la région frontalière entre la France et la Suisse entre la périphérie nord-ouest de Genève et le pays de Gex (France). C'est le plus puissant accélérateur de particules construit à ce jour, a fortiori depuis son amélioration achevée en 2015 après deux ans de mise à l'arrêt2. Il est même présenté comme le plus grand dispositif expérimental jamais construit pour valider des théories physiquesNote 1. En 2012, il confirme l'existence du boson de Higgs.

Le LHC a été construit dans le tunnel circulaire (26,659 km de circonférence3) de son prédécesseur, le collisionneur LEP (Large Electron Positron). À la différence de ce dernier, ce sont des protons — de la famille des hadrons — qui sont accélérés pour produire des collisions, en lieu et place des électrons ou des positrons pour le LEP.

Ces protons seront accélérés jusqu'à une énergie de 7 TeV, soit près de 7 500 fois leur énergie de masse. L'énergie totale de deux protons incidents sera ainsi de 14 TeV. Le LHC sera également utilisé pour accélérer des ions lourds comme le plomb avec une énergie totale de collision de 1 150 TeV pour le noyau dans son ensemble soit un peu plus de 2,75 TeV par nucléon qu'il contient.

Huit détecteurs, dont quatre de très grande taille, sont installés sur cet accélérateur, à savoir ATLAS, CMS, TOTEM, LHCb, ALICE, LHCf, MoEDAL et FASER (voir leur description détaillée).

Il Large Hadron Collider (in italiano "Grande Collisore di Adroni"), abbreviato in LHC, è un acceleratore di particelle situato presso il CERN di Ginevra, utilizzato per ricerche sperimentali nel campo della fisica delle particelle.[1]

LHC è l'acceleratore di particelle più grande e potente esistente sulla terra. Si tratta di un acceleratore di adroni con una energia di circa 14 teraelettronvolt, costruito all'interno di un tunnel sotterraneo con una circonferenza di circa 27 km, a circa 100 m di profondità. Si trova nello stesso tunnel realizzato in precedenza per l'acceleratore LEP.

I componenti più importanti dell'acceleratore sono 1232 magneti superconduttori a bassa temperatura, che hanno un campo intenso circa 8 Tesla[2] . Sono realizzati in lega di niobio e titanio e sono raffreddati alla temperatura di circa 2 K (circa -271 °C), utilizzando elio liquido.

La macchina accelera due fasci che circolano in direzioni opposte, all'interno dei tubi a vuoto. I fasci collidono in quattro punti lungo il percorso, dove il tunnel si allarga per lasciare spazio a grandi vani che ospitano i rivelatori. I quattro principali rivelatori di particelle sono ATLAS, di forma toroidale, il Solenoide compatto per muoni, LHCb, e ALICE, un collisore di ioni. I rivelatori utilizzano tecnologie diverse e operano intorno al punto in cui i fasci collidono. Nelle collisioni vengono prodotte numerose particelle, le cui proprietà vengono misurate dai rivelatori e inviate al centro di calcolo. Tra gli scopi principali degli studi vi è la ricerca di tracce dell'esistenza di nuove particelle.

Dopo un iniziale guasto che ha compromesso l'impianto di raffreddamento e provocato un fermo di circa un anno, LHC ha cominciato la sua campagna sperimentale alla fine del 2009.[3] L'incidente è stato discusso in dettaglio dal fisico Lucio Rossi, all'epoca responsabile dei magneti superconduttori.[4]

Nel 2018 è stata avviata l’attuazione di un progetto di miglioramento delle prestazioni, in particolare di incremento di un fattore 10 della luminosità del fascio (High luminosity LHC project)[5][6].

El Gran Colisionador de Hadrones (LHC; en inglés, Large Hadron Collider) es el acelerador de partículas más grande y de mayor energía que existe y la máquina más grande construida por el ser humano en el mundo.12​ Fue construido por la Organización Europea para la Investigación Nuclear (CERN) entre 1998 y 2008 en colaboración con más de 10 000 científicos y cientos de universidades y laboratorios, así como más de 100 países de todo el Mundo.3​ Se encuentra en un túnel de 27 kilómetros de circunferencia y a una profundidad de 175 metros bajo tierra debajo de la frontera entre Francia y Suiza, cerca de Ginebra.

Las primeras colisiones se lograron en 2010 a una energía de 3,5 teraelectronvoltios (TeV) por haz, aproximadamente cuatro veces el récord mundial anterior.45​ Después de las correspondientes actualizaciones, alcanzó 6,5 TeV por haz (13 TeV de energía de colisión total, el récord mundial actual).6789​ A finales de 2018, entró en un período de parada de dos años para nuevas actualizaciones, con el cual se espera posteriormente alcanzar energías de colisión aún mayores.

El colisionador tiene cuatro puntos de cruce, alrededor de los cuales se colocan siete detectores, cada uno diseñado para ciertos tipos de experimentos en investigación. El LHC hace colisionar protones, pero también puede utilizar haces de iones pesados (por ejemplo de plomo) realizándose colisiones de protones de plomo normalmente durante un mes al año. El objetivo de los detectores del LHC es permitir a los físicos probar las predicciones de las diferentes teorías de la física de partículas, incluida la medición de las propiedades del bosón de Higgs10​ y la búsqueda de una larga serie de nuevas partículas predicha por las teorías de la supersimetría,11​ así como también otros problemas no resueltos en la larga lista de elementos en la física de partículas.

Большо́й адро́нный колла́йдер, сокращённо БАК (англ. Large Hadron Collider, сокращённо LHC) — ускоритель заряженных частиц на встречных пучках, предназначенный для разгона протонов и тяжёлых ионов (ионов свинца) и изучения продуктов их соударений. Коллайдер построен в ЦЕРНе (Европейский совет ядерных исследований), находящемся около Женевы, на границе Швейцарии и Франции. БАК является самой крупной экспериментальной установкой в мире. В строительстве и исследованиях участвовали и участвуют более 10 тысяч учёных и инженеров более чем из 100 стран[1], в том числе из России — 12 институтов и 2 федеральных ядерных центра (ВНИИТФ, ВНИИЯФ).

«Большим» назван из-за своих размеров: длина основного кольца ускорителя составляет 26 659 м[2]; «адронным» — из-за того, что ускоряет адроны: протоны и тяжелые ядра атомов; «коллайдером» (англ. collider — сталкиватель) — из-за того, что два пучка ускоренных частиц сталкиваются во встречных направлениях в специальных местах столкновения — внутри детекторов элементарных частиц[3].

此图片/视频/音频可能受版权保护,它仅用于教学目的。如果您发现了不妥之处请用通知我们,我们将马上删除它。
锂电池

 

 锂电池的概述         锂电池是一类由锂金属或锂合金为负极材料、使用非水电解质溶液的电池。最早出现的锂电池来自于伟大的发明家爱迪生。 由于锂金属的化学特性非常活泼,使得锂金属的加工、保存、使用,对环境要求非常高。所以,锂电池长期没有得到应用。   锂电池的特点
      1、具有更高的重量能量比、体积能量比;
      2、电压高,单节锂电池电压为3.6V,等于3只镍镉或镍氢充电电池的串联电压;
      3、自放电小可长时间存放,这是该电池最突出的优越性;
      4、无记忆效应。锂电池不存在镍镉电池的所谓记忆效应,所以锂电池充电前无需放电;
      5、寿命长。正常工作条件下,锂电池充/放电循环次数远大于500次;
      6、可以快速充电。锂电池通常可以采用0.5~1倍容量的电流充电,使充电时间缩短至1~2小时;
      7、可以随意并联使用;
      8、由于电池中不含镉、铅、汞等重金属元素,对环境无污染,是当代最先进的绿色电池;
      9、成本高。与其它可充电池相比,锂电池价格较贵。   锂电池的结构         锂电池通常有两种外型:圆柱型和长方型。  

(Quelle:http://www.tzgb.com/Electriccars/Lifestyle/200804/2801.html)

此图片/视频/音频可能受版权保护,它仅用于教学目的。如果您发现了不妥之处请用通知我们,我们将马上删除它。
磁化内衬惯性核聚变
Magnetized Liner Inertial Fusion (MagLIF) is an emerging method of producing controlled nuclear fusion. It is part of the broad category of inertial fusion energy (IFE) systems, which drives the inward movement of fusion fuel, thereby compressing it to reach densities and temperatures where fusion reactions occur.
此图片/视频/音频可能受版权保护,它仅用于教学目的。如果您发现了不妥之处请用通知我们,我们将马上删除它。
磁化目标核聚变
Magnetized Target Fusion (MTF) is a fusion power concept that combines features of magnetic confinement fusion (MCF) and inertial confinement fusion (ICF).

此图片/视频/音频可能受版权保护,它仅用于教学目的。如果您发现了不妥之处请用通知我们,我们将马上删除它。
火星-500
/assets/contentimages/Mars500_logo.jpg
此图片/视频/音频可能受版权保护,它仅用于教学目的。如果您发现了不妥之处请用通知我们,我们将马上删除它。
材料模拟

此图片/视频/音频可能受版权保护,它仅用于教学目的。如果您发现了不妥之处请用通知我们,我们将马上删除它。
MeerKAT射电望远镜
/assets/contentimages/meerkat_telescope~0.jpg
此图片/视频/音频可能受版权保护,它仅用于教学目的。如果您发现了不妥之处请用通知我们,我们将马上删除它。
納米技術 纳米技术/Nanotechnik/Nanotechnology

Der Sammelbegriff Nanotechnologie, oft auch Nanotechnik (altgriechisch νᾶνος nános ‚Zwerg‘) gründet auf der allen Nano-Forschungsgebieten zu Grunde liegenden gleichen Größenordnung der Nanoteilchen vom Einzel-Atom bis zu einer Strukturgröße von 100 Nanometern (nm): Ein Nanometer ist ein Milliardstel Meter (10−9 m). Diese Größenordnung bezeichnet einen Grenzbereich, in dem die Oberflächeneigenschaften gegenüber den Volumeneigenschaften der Materialien eine immer größere Rolle spielen und zunehmend quantenphysikalische Effekte berücksichtigt werden müssen. In der Nanotechnologie stößt man also zu Längenskalen vor, auf denen besonders die Größe die Eigenschaften eines Objektes bestimmt. Man spricht von „größeninduzierten Funktionalitäten“.

Mit dem Begriff wird heute die entsprechende Forschung in der Cluster-, Halbleiter- und Oberflächenphysik, der Oberflächen- und anderen Gebieten der Chemie sowie in Teilbereichen des Maschinenbaus und der Lebensmitteltechnologie (Nano-Food) bezeichnet.

纳米技术英语:Nanotechnology)是一门应用科学,其目的在于研究于纳米规模时,物质和设备的设计方法、组成、特性以及应用。纳米科技是许多如生物物理化学等科学领域在技术上的次级分类,美国国家纳米科技启动计划将其定义为“1至100纳米尺寸尤其是现存科技在纳米规模时的延伸”。纳米科技的世界为原子分子高分子量子点和高分子集合,并且被表面效应所掌控,如范德瓦耳斯力氢键电荷离子键共价键疏水性亲水性量子穿隧效应等,而惯性湍流巨观效应则小得可以被忽略掉。举个例子,当表面积对体积的比例剧烈地增大时,开起了如催化学等以表面为主的科学新的可能性。 

此图片/视频/音频可能受版权保护,它仅用于教学目的。如果您发现了不妥之处请用通知我们,我们将马上删除它。