German — Chinese
循环神经网络(Recurrent neural network:RNN)是神经网络的一种。单纯的RNN因为无法处理随着递归,权重指数级爆炸或梯度消失问题,难以捕捉长期时间关联;而结合不同的LSTM可以很好解决这个问题。[1][2]
时间循环神经网络可以描述动态时间行为,因为和前馈神经网络(feedforward neural network)接受较特定结构的输入不同,RNN将状态在自身网络中循环传递,因此可以接受更广泛的时间序列结构输入。手写识别是最早成功利用RNN的研究结果。
Als rekurrente bzw. rückgekoppelte neuronale Netze bezeichnet man neuronale Netze, die sich im Gegensatz zu den Feedforward-Netzen durch Verbindungen von Neuronen einer Schicht zu Neuronen derselben oder einer vorangegangenen Schicht auszeichnen. Im Gehirn ist dies die bevorzugte Verschaltungsweise neuronaler Netze, insbesondere im Neocortex. In künstlichen neuronalen Netzen wird die rekurrente Verschaltung von Modellneuronen benutzt, um zeitlich codierte Informationen in den Daten zu entdecken.[1][2] Beispiele für solche rekurrenten neuronalen Netze sind das Elman-Netz, das Jordan-Netz, das Hopfield-Netz sowie das vollständig verschaltete neuronale Netz.