Deutsch-Chinesische Enzyklopädie, 德汉百科

       
German — Chinese
Education and Research *Important disciplines

運動醫學 运动医学/体育医学/Sports Medicine
Sportmedizin untersucht den Einfluss von Bewegung, Training und Sport sowie Bewegungsmangel auf den gesunden und kranken Menschen jeder Altersstufe, um die Befunde der Prävention, Therapie und Rehabilitation den Sporttreibenden dienlich zu machen. Sie umfasst theoretische und praktische Medizin und kann dabei auf Theorien zurückgreifen, die bis zur Antike zurückreichen.

Sportmedizin untersucht den Einfluss von Bewegung, Training und Sport sowie Bewegungsmangel auf den gesunden und kranken Menschen jeder Altersstufe, um die Befunde der PräventionTherapie und Rehabilitation den Sporttreibenden dienlich zu machen. Sie umfasst theoretische und praktische Medizin und kann dabei auf Theorien zurückgreifen, die bis zur Antike zurückreichen.[1]

Diese Beschreibung von Wildor Hollmann (1958) wurde 1977 als offizielle Definition vom Weltverband für Sportmedizin (FIMS) übernommen und lautet in der englischen Fassung: „Sports medicine embodies theoretical and practical medicine which examines the influence of exercise, training and sports, as well the lack of exercise, on healthy and unhealthy people of all ages to produce results that are conclusive to prevention, therapy and rehabilitation as well as beneficial for the athlete himself“.

运动医学英文:Sports Medicine)为医学的一个分支,为复健医学的一个次专科,范畴为研究体适能、防止及处理与运动体能锻炼相关的创伤

This image, video or audio may be copyrighted. It is used for educational purposes only. If you find it, please notify us byand we will remove it immediately.
體育經濟學 体育经济学/Sports Economics
Unter Sportökonomie wird die Anwendung von volkswirtschaftlichen sowie betriebswirtschaftlichen Instrumenten auf einzelne Sportbereiche verstanden.
This image, video or audio may be copyrighted. It is used for educational purposes only. If you find it, please notify us byand we will remove it immediately.
運動科學 运动科学/Sports Science
Die Sportwissenschaft ist eine interdisziplinäre Wissenschaft (Querschnittswissenschaft), die Probleme und Erscheinungsformen im Bereich von Sport und Bewegung zum Gegenstand hat. Da die Sportwissenschaft auf eine Reihe anderer Wissenschaften zurückgreift und sich entsprechend spezialisierte Einzeldisziplinen herausgebildet haben, wird häufig auch von Sportwissenschaften gesprochen

Die Sportwissenschaft ist eine interdisziplinäre Wissenschaft (Querschnittswissenschaft), die Probleme und Erscheinungsformen im Bereich von Sport und Bewegung zum Gegenstand hat. Da die Sportwissenschaft auf eine Reihe anderer Wissenschaften zurückgreift und sich entsprechend spezialisierte Einzeldisziplinen herausgebildet haben, wird häufig auch von Sportwissenschaften gesprochen. Der Ursprung der auf den Sport bezogenen Wissenschaften (sciences appliquées aux sports) reicht bis in die Renaissance zurück, aber erst gegen Ende des 19. Jahrhunderts hat sich eine eigenständige Sportwissenschaft herausgebildet.

运动科学(英语:Sports Science),又译为竞技运动科学,对于人类竞技运动进行科学化分析的一个综合性学科,这与健身运动(英语:exercise Science)有所不同。竞技运动科学的研究领域,除了综合了许多传统的学问,例如生理学(Physiology)、心理学(Psychology)、动作控制(Motor Control)、生物力学(Biomechanics)、生物化学(Biochemistry)之外,也包括了营养学与膳食(Nutrition Science)、运动科技(Sports Technology)、神经科学(Neuroscience)、人体测量学(Anthropometry)、身体形态测量学(Kinanthropometry)、性能分析(Performance Analysis)等。总的来说,竞技运动科学是要把各个科学领域的知识,应用到运动比赛上面,以提升运动表现。

This image, video or audio may be copyrighted. It is used for educational purposes only. If you find it, please notify us byand we will remove it immediately.
统计学/统计/统计表/统计法/Statistics
This image, video or audio may be copyrighted. It is used for educational purposes only. If you find it, please notify us byand we will remove it immediately.
統計力學 统计力学/Statistical mechanics
Die statistische Mechanik war ursprünglich ein Anwendungsgebiet der Mechanik bzw. Quantenmechanik. Heutzutage wird der Begriff oft synonym zur statistischen Physik und zur statistischen Thermodynamik gebraucht und steht somit für die (theoretische und experimentelle) Analyse zahlreicher fundamentaler Eigenschaften von makroskopischen Körpern und anderen Systemen vieler Teilchen (Atome, Moleküle usw.).

Die statistische Mechanik war ursprünglich ein Anwendungsgebiet der Mechanik bzw. Quantenmechanik. Heutzutage wird der Begriff oft synonym zur statistischen Physik und zur statistischen Thermodynamik gebraucht und steht somit für die (theoretische und experimentelle) Analyse zahlreicher fundamentaler Eigenschaften von makroskopischen Körpern und anderen Systemen vieler Teilchen (AtomeMoleküle usw.).

U. a. liefert die statistische Mechanik eine mikroskopische Grundlegung der Thermodynamik. Sie ist daher von großer Bedeutung für die Chemie, insbesondere für die physikalische Chemie, in der man auch von statistischer Thermodynamik spricht. Darüber hinaus beschreibt sie eine Vielzahl weiterer thermischer Gleichgewichts- und Nichtgleichgewichtseigenschaften, die mit Hilfe moderner Messmethoden (z. B. Streuexperimente) untersucht werden.

In der (ursprünglichen) statistischen Mechanik wird der Zustand eines physikalischen Systems nicht durch die Trajektorien, d. h. durch den zeitlichen Verlauf von Orten und Impulsen der einzelnen Teilchen bzw. deren quantenmechanischen Zuständen, charakterisiert, sondern durch die Wahrscheinlichkeit, derartige mikroskopische Zustände vorzufinden.

Die statistische Mechanik ist vor allem durch Arbeiten von James Clerk MaxwellLudwig Boltzmann und Josiah Willard Gibbs entstanden, wobei letzterer den Begriff prägte.

统计力学英语statistical mechanics)是一个以玻尔兹曼等人提出以最大熵理论为基础,借由配分函数将有大量组成成分(通常为分子)系统中微观物理状态(例如:动能势能)与宏观物理量统计规律 (例如:压力体积温度热力学函数状态方程等)连结起来的科学。如气体分子系统中的压力体积温度伊辛模型磁性物质系统的总磁矩相变温度、和相变指数

通常可分为平衡态统计力学,与非平衡态统计力学。其中以平衡态统计力学的成果较为完整,而非平衡态统计力学至今也在发展中。统计物理其中有许多理论影响着其他的学门,如信息论中的信息熵。化学中的化学反应、耗散结构。和发展中的经济物理学这些学门当中都可看出统计力学研究线性与非线性复杂系统中的成果。

This image, video or audio may be copyrighted. It is used for educational purposes only. If you find it, please notify us byand we will remove it immediately.
恆星動力學 恒星动力学/Stellar dynamics
Die Stellardynamik befasst sich mit der scheinbaren und absoluten Bewegung von Sternen in verschiedenen Sternhaufen und anderen Sternsystemen, um daraus ihre Bildung und weitere Entwicklung abzuleiten. Dieses Teilgebiet der Astronomie hat mit zahlreichen Schwierigkeiten zu kämpfen, darunter die riesigen Entfernungen, die Kleinheit der zu messenden Effekte, die Wirkung systematischer Fehler und die gegenseitige Beeinflussung von hunderten bis Millionen schwerer Massen.

恒星动力学天文物理的一个分支,以统计学的方法介绍恒星在它们共同重力下的集体运动。但重力的长距离效应和恒星系统缓慢的弛豫,阻碍了统计物理方法的使用。一颗恒星在星系球状星团内的运动,主要受到其它恒星的平均分布和恒星距离的影响,和最邻近的恒星少量的影响。

如果物质的分布是理想化的平滑,恒星的弛豫过程是倾向于每颗恒星有着各别的运动轨迹的。2-体弛豫被限制在一颗恒星和另一颗恒星之间的交互作用下,而"剧变弛豫"是大型恒星集团系统集体变异所造成的。

Die Stellardynamik befasst sich mit der scheinbaren und absoluten Bewegung von Sternen in verschiedenen Sternhaufen und anderen Sternsystemen, um daraus ihre Bildung und weitere Entwicklung abzuleiten.

Dieses Teilgebiet der Astronomie hat mit zahlreichen Schwierigkeiten zu kämpfen, darunter die riesigen Entfernungen, die Kleinheit der zu messenden Effekte, die Wirkung systematischer Fehler und die gegenseitige Beeinflussung von hunderten bis Millionen schwerer Massen.

This image, video or audio may be copyrighted. It is used for educational purposes only. If you find it, please notify us byand we will remove it immediately.
立體化學 立体化学/Stereochemistry
立体化学(stereochemistry),有机化学的主要内容。研究有机物在三维空间内的结构与变化的化学分支。由于碳以及所有其他元素的化学键往往不是在二维平面上伸展的,于是就产生了相应的异构现象,由此产生了立体化学这门学科。[1][2] 立体化学的一个重要分支是手性分子的研究。 立体化学涵盖了有机的,无机的,生物的,物理的,尤其是超分子的化学的整个频谱。 立体化学包括确定和描述这些关系的方法。

立体化学(stereochemistry),有机化学的主要内容。研究有机物三维空间内的结构与变化的化学分支。由于以及所有其他元素化学键往往不是在二维平面上伸展的,于是就产生了相应的异构现象,由此产生了立体化学这门学科。[1][2]

立体化学的一个重要分支是手性分子的研究。 立体化学涵盖了有机的无机的生物的物理的,尤其是超分子的化学的整个频谱。 立体化学包括确定和描述这些关系的方法。

Die Stereochemie ist ein Teilgebiet der Chemie, das im Wesentlichen zwei Aspekte behandelt:

  • die Lehre vom dreidimensionalen Aufbau der Moleküle, die die gleiche chemische Bindung und Zusammensetzung, aber eine verschiedene Anordnung der Atome aufweisen, wobei die KonstitutionKonfiguration und Konformation den dreidimensionalen Aufbau des Moleküls bestimmen (stereochemische Isomerie)
  • die Lehre vom räumlichen Ablauf chemischer Reaktionen stereoisomerer Moleküle (stereochemische Dynamik).

Das Studium stereochemischer Phänomene erstreckt sich auf das gesamte Gebiet der organischenanorganischenphysikalischen und supramolekularen Chemie sowie der Biochemie.

This image, video or audio may be copyrighted. It is used for educational purposes only. If you find it, please notify us byand we will remove it immediately.
隨機過程 随机过程/Stochastic process
Ein stochastischer Prozess (auch Zufallsprozess) ist ein mathematisches Objekt zur Modellierung von zufälligen, oft zeitlich geordneten, Vorgängen. Die Theorie der stochastischen Prozesse stellt eine wesentliche Erweiterung der Wahrscheinlichkeitstheorie dar und bildet die Grundlage für die stochastische Analysis. Obwohl einfache stochastische Prozesse schon vor langer Zeit studiert wurden, wurde die heute gültige formale Theorie erst Anfang des 20. Jahrhunderts entwickelt, vor allem durch Paul

机率论中,随机过程(英语:Stochastic process 或 Random process),又称随机函数(英语:Random function)[1][2],代表一群被足码标记随机变量。随机过程的实例如股票汇率的波动、语音信号视频信号体温的变化,随机运动如布朗运动随机徘徊等等。

This image, video or audio may be copyrighted. It is used for educational purposes only. If you find it, please notify us byand we will remove it immediately.
口腔醫學 口腔医学/Oral medicine
Die Stomatologie (griechisch στόμα stóma, deutsch ‚Mund‘ und λόγος lógos, deutsch ‚Wort‘, ‚Lehre‘) ist die Wissenschaft der Heilkunde der Krankheiten der Mundhöhle, also der Mund-, Kiefer- und Zahnmedizin.

Die Stomatologie (griechisch στόμα stóma, deutsch ‚Mund‘ und λόγος lógos, deutsch ‚Wort‘, ‚Lehre‘) ist die Wissenschaft der Heilkunde der Krankheiten der Mundhöhle, also der Mund-, Kiefer- und Zahnmedizin

口腔医学口腔科是一门与口腔有关的学科和门诊,涉及复杂的口腔健康护理,包括口腔和颌面部的诊断和治疗。口腔科医生在诊断和口腔粘膜异常等疾病时要接受额外的专业培训和实践操作。

This image, video or audio may be copyrighted. It is used for educational purposes only. If you find it, please notify us byand we will remove it immediately.
弦理論 弦理论/String theory
Als Stringtheorie bezeichnet man eine Sammlung eng verwandter hypothetischer physikalischer Modelle, die anstelle der Beschreibung von Elementarteilchen in den gewohnten Modellen der Quantenfeldtheorie als punktförmige Teilchen (räumliche Dimension Null) in der Raum-Zeit sogenannte Strings (englisch für Fäden oder Saiten) als fundamentale Objekte mit eindimensionaler räumlicher Ausdehnung verwenden.

弦理论(英语:String theory),又称弦论,是发展中理论物理学的起始,是一在量子力学及相对论、微积分等相对发展完善后,试图透过单一解释的系统统一物质和基本作用力的万有理论

弦理论雏形奠基于二十世纪中叶后半由加布里埃莱·韦内齐亚诺主张并提出,原始目的是找到诠释强相互作用力之数学函数,但据此数学函数南部阳一郎博士发现可将不具空间之零维点粒子视为细小的弦,进而提出强子弦模型。弦论在一段时间不备受关注,除其复杂的高维度诠释外,量子色动力学等场论早已能完美解释强相互作用力。而后弦论被少数科学家发现其解释若套用到重力则可以完美解释关于重力无法纳入大统一理论中的窘境,史称第一次弦论革命,而后第二次弦论革命解决对偶性问题,正式与标准模型(2012年7月4日,CERN LHC CMS&ATLAS 向量玻色子散射实验双盲共同发表成果发掘出的标准模型希格斯玻色子使其成为下述三大万物理论最具权威性的理论)及环圈量子引力场论并肩成为大统一理论备受瞩目的可能性选项,其严谨幻妙的数学式、不需重整化的构思及对称性让许多物理学家徜徉于其中。

弦理论用一段段“能量弦线”作最基本单位以说明宇宙里所有微观粒子如电子夸克、中微子都由这一维的“能量线”所组成;换而言之,弦论主张“”以不同的振动模式对应到自然界的各种基本粒子

较早时期所建立的粒子学说则是认为所有物质是由零维的点粒子所组成,也是目前广为接受的物理模型,也很成功的解释和预测相当多的物理现象和问题,但是此理论所根据的粒子模型却遇到一些无法解释的问题。比较起来,弦理论的基础是波动模型,因此能够避开前一种理论所遇到的问题。更深的弦理论学说不只是描述弦状物体,还包含了点状、薄膜状物体,更高维度的空间,甚至平行宇宙。弦理论目前尚未能做出可以实验验证的准确预测。

Als Stringtheorie bezeichnet man eine Sammlung eng verwandter hypothetischer physikalischer Modelle, die anstelle der Beschreibung von Elementarteilchen in den gewohnten Modellen der Quantenfeldtheorie als punktförmige Teilchen (räumliche Dimension Null) in der Raum-Zeit sogenannte Strings (englisch für Fäden oder Saiten) als fundamentale Objekte mit eindimensionaler räumlicher Ausdehnung verwenden. In Erweiterungen der Stringtheorie werden auch höherdimensionale Objekte betrachtet. Stringtheorien wurden in den 1960er Jahren zur Beschreibung der starken Wechselwirkung (Quantenchromodynamik) eingeführt.

Seit den 1980er Jahren erlebte die Stringtheorie einen starken Aufschwung. Sie gilt seitdem als eine Kandidatin für eine alle Naturkräfte vereinheitlichende Theorie, die das Standardmodell der Elementarteilchenphysik und die Gravitation miteinander verbindet. Diskutiert wird dabei vor allem die supersymmetrische Version der Stringtheorie („Superstringtheorie“). Die Supersymmetrie sagt neue, supersymmetrische Partnerteilchen für alle Bosonen und Fermionen voraus. Zum Aufschwung der Superstringtheorie trug erheblich bei, dass sie konkrete Vorhersagen für die Symmetriegruppen einer Großen Vereinheitlichten Theorie (GUT) machte. Des Weiteren fanden Vorhersagen zur Betrachtung von Quantenfeldtheorien (wie das holografische Prinzip in AdS/CFT) große Beachtung.[1] In den 1990er Jahren stellte sich heraus, dass die bis dahin bekannten Superstringtheorien und die 11-dimensionale Supergravitation miteinander verbunden als Teil einer umfassenderen Theorie („M-Theorie“ genannt) betrachtet werden können. Letztere umfasst auch höherdimensionale Objekte (sogenannte „Brane“). Die Stringtheorie führte zu einem engen Austausch zwischen verschiedenen Gebieten der Mathematik und theoretischen Physik.[1][2]

Die Stringtheorie ist gegenwärtig weder experimentell bestätigt noch widerlegt. Dies liegt unter anderem daran, dass die Vereinigung der Naturkräfte erst auf Energieskalen erwartet wird (siehe Planck-Skala), die in absehbarer Zeit nicht erreichbar sind. Die Stringtheorie wird daher seit den 2000er Jahren sowohl innerhalb als auch außerhalb der Physik kritisiert. Die Kritik richtet sich dabei auch auf die einseitige und außergewöhnliche Bindung von Forschungsressourcen in Gebieten, die Anwendungen fern stehen, und erfolgte besonders dezidiert von Theoretikern, die alternative Theorien der Quantengravitation verfolgen (wie die Schleifenquantengravitation).[3][4] Zudem tauchten bei der konkreten mathematischen Durcharbeitung der Stringtheorie unerwartet viele Varianten auf, die die Erfolgsaussichten, alle Naturkräfte über die Stringtheorie zu vereinheitlichen, in weite Ferne rücken.

Heute gilt die Stringtheorie zwar als „verlockend“ und „mathematisch sehr elegant“, da sie aber keine Vorhersagen macht, die aktuell experimentell bestätigt werden könnten, wird ihre praktische Bedeutung für die Teilchenphysik in Abrede gestellt.

This image, video or audio may be copyrighted. It is used for educational purposes only. If you find it, please notify us byand we will remove it immediately.
流體力學 流体力学/Fluid mechanics
Die Strömungsmechanik, Fluidmechanik oder Strömungslehre ist die Wissenschaft vom physikalischen Verhalten von Fluiden. Die in der Strömungsmechanik gewonnenen Kenntnisse sind Gesetzmäßigkeiten in Strömungsvorgängen und dienen der Lösung von Strömungsproblemen in der Auslegung von durch- bzw. umströmten Bauteilen sowie der Überwachung von Strömungen.

Die StrömungsmechanikFluidmechanik oder Strömungslehre ist die Wissenschaft vom physikalischen Verhalten von Fluiden. Die in der Strömungsmechanik gewonnenen Kenntnisse sind Gesetzmäßigkeiten in Strömungsvorgängen und dienen der Lösung von Strömungsproblemen in der Auslegung von durch- bzw. umströmten Bauteilen sowie der Überwachung von Strömungen. Angewendet wird sie unter anderem im MaschinenbauChemieingenieurwesen, der Wasser- und EnergiewirtschaftMeteorologieAstrophysik und der Medizin. Ihre Grundlagen findet sie in der Kontinuumsmechanik und Thermodynamik, also der klassischen Physik.

流体力学(英语:Fluid mechanics)是力学的一门分支,是研究流体(包含气体液体等离子体)现象以及相关力学行为的科学。流体力学可以按照研究对象的运动方式分为流体静力学流体动力学,前者研究处于静止状态的流体,后者研究对于流体运动的影响。流体力学按照应用范围,分为空气力学水力学等。

流体力学是连续介质力学的一门分支,是以宏观的角度来考虑系统特性,而不是微观的考虑系统中每一个粒子的特性。流体力学(尤甚是流体动力学)是一个活跃的研究领域,其中有许多尚未解决或部分解决的问题。流体动力学所应用的数学系统非常复杂,最佳的处理方式是利用电脑进行数值分析,如计算流体力学通过数值分析的方式求解流体力学问题。粒子图像测速技术是一个将流体流场视觉化并进行分析的实验方式,也利用了流体高度可见化的特点。

理论流体力学的基本方程是纳维-斯托克斯方程简称N-S方程,纳维-斯托克斯方程由一些微分方程组成,通常只有透过给予特定的边界条件与使用数值计算的方式才可求解。纳维-斯托克斯方程中包含速度�→=(�,�,�)压强密度黏度,和温度变量,而这些都是位置(�,�,�)时间t的函数。通过质量守恒能量守恒动量守恒,以及热力学方程�(�,�,�)介质材料性质,我们可以确定这些变量与其应变的关系。

This image, video or audio may be copyrighted. It is used for educational purposes only. If you find it, please notify us byand we will remove it immediately.
構造地質學 构造地质学/Structural geology
Strukturgeologie (lat. structura ‚Bau‘) ist die Lehre vom Bau der Erdkruste, ein Zweig der analytischen Tektonik. Sie befasst sich mit den räumlichen Beziehungen der Gesteine zueinander und den in ihnen erkennbaren Deformationen.

构造地质学(英語:Structural geology)是地质学的一门分支,主要是研究岩石的构造形态、空间分布和形成原因,从而揭示地壳运动的规律。其研究成果广泛应用于区域地质调查、资源勘探等领域。结构地质学的主要目标是使用当今岩石几何形状的测量数据揭示岩石中变形(形变)的历史信息,并最终理解导致观察到的应变和几何形状的应力场。 这种对应力场动力学的理解可以与地质历史上的重要事件联系起来; 一个共同的目标是了解由于板块构造所造成的区域性岩石变形模式(例如,造山运动裂谷)的特定区域的结构演变。

Strukturgeologie (lat. structura ‚Bau‘) ist die Lehre vom Bau der Erdkruste, ein Zweig der analytischen Tektonik. Sie befasst sich mit den räumlichen Beziehungen der Gesteine zueinander und den in ihnen erkennbaren Deformationen.

Die moderne Tektonik unterscheidet:

This image, video or audio may be copyrighted. It is used for educational purposes only. If you find it, please notify us byand we will remove it immediately.