Deutsch-Chinesische Enzyklopädie, 德汉百科

       
German — Chinese
Energy resource *Nuclear power

韩国核电站
This image, video or audio may be copyrighted. It is used for educational purposes only. If you find it, please notify us byand we will remove it immediately.
俄羅斯核電站 俄罗斯核电站
This image, video or audio may be copyrighted. It is used for educational purposes only. If you find it, please notify us byand we will remove it immediately.
西班牙的核電站 西班牙的核电站

This image, video or audio may be copyrighted. It is used for educational purposes only. If you find it, please notify us byand we will remove it immediately.
美国核能管理委员会
Die Nuclear Regulatory Commission (NRC) ist eine US-amerikanische Behörde, die 1974 durch den Energy Reorganization Act aus der Atomic Energy Commission entstanden ist und am 19. Januar 1975 gegründet wurde. Die Kommission ist zuständig für die Sicherheit von Kernkraftwerken, die Genehmigung und Verlängerung von Betriebslizenzen kerntechnischer Anlagen, die Lizenzierung und Sicherheit von nuklearen Materialien und das Management von radioaktiven Abfällen (Lagerung, Recycling und Entsorgung).
This image, video or audio may be copyrighted. It is used for educational purposes only. If you find it, please notify us byand we will remove it immediately.
核动力
Unter Kernenergieantrieb versteht man den Antrieb von Fahrzeugen, Flugzeugen, Schiffen oder Raumfahrzeugen mittels Kernenergie.
http://www.net4info.de/photos/cpg/albums/userpics/10002/Nuclear_propulsion.jpg

This image, video or audio may be copyrighted. It is used for educational purposes only. If you find it, please notify us byand we will remove it immediately.
奥克尼核电站
Eigentümer Duke Energy Betreiber Duke Energy Projektbeginn 1966 Kommerzieller Betrieb 1973 Aktive Reaktoren (Brutto) 3 (2.673 MW) Eingespeiste Energie im Jahr 583.193 GWh
This image, video or audio may be copyrighted. It is used for educational purposes only. If you find it, please notify us byand we will remove it immediately.
帕洛维德核电站
Eigentümer Arizona Public Service Co. Betreiber Arizona Public Service Co. Projektbeginn 1973 Kommerzieller Betrieb 28. Jan. 1986 Aktive Reaktoren (Brutto) 3 (4242 MW) Eingespeiste Energie im Jahr 2018 31.106 GWh Eingespeiste Energie seit Inbetriebnahme 887.070 GWh
This image, video or audio may be copyrighted. It is used for educational purposes only. If you find it, please notify us byand we will remove it immediately.
核電池 核电池
Eine Radionuklidbatterie, auch Radioisotopengenerator, Isotopenbatterie, Atombatterie wandelt die thermische Energie oder aber die Betastrahlung bzw. Alphastrahlung des spontanen Kernzerfalls eines Radionuklids in elektrische Energie um. Sie gewinnt ihre Energie aus radioaktivem Zerfall, nicht etwa aus einer Kernspaltung mit nachfolgender Kettenreaktion, und ist daher kein Kernreaktor.

Nuclear Battery

The public is familiar with nuclear energy in nuclear power plants but not in batteries. Nuclear batteries are in fact closer to nuclear power plants than traditional batteries in that they use radioactivity to generate power instead of storing an amount of charge. When compared to chemical batteries, nuclear batteries are characterized by higher volumetric energy density (therefore longer battery life) and stronger endurance in harsh conditions. This report will explore the present state of nuclear battery technology and recently discovered possible breakthroughs.

Applications

Space exploration poses unique challenges that are not faced when working with electronics on Earth. It is impossible or extremely costly to access a device once it has been launched into the space. Because only a small percentage of sunlight reaches the outer perimeter of the solar system compared to the orbit of Earth, solar energy is not a practical solution to powering electronic equipments when exploring the outer planets. NASA uses a specific type of nuclear battery technology called Radioactive Thermoelectric Generator (RTG) to power their spacecrafts in missions that last over 10 years.

Implantable medical devices (IMDs) also utilize the unique characteristics of nuclear batteries. Just like in spacecrafts, batteries used to power IMDs must function reliably over a long period of time without being accessed for recharge or maintenance. Unlike in spacecrafts, however, batteries used in IMDs must be limited in size and radioactivity. Hence, a different nuclear battery technology called betavoltaic cell is used in IMDs. Although the technology was invented and widely used for patients in the 1970s, the potential risk of radiation convinced the medical industry to shift to lithium ion batteries in the 1980s. Only with the recent advancement in safety of nuclear batteries, the option with a considerable advantage in battery life is being reconsidered.

The United States Department of Defense requires that every missile and aircraft be equipped with an anti-tamper protection such that the technology cannot be reverse-engineered by others. Because a single instance of battery malfunction can wipe the memory circuit's configuration, batteries used in anti-tamper system must withstand temperatures between -65 and +150 degrees Celsius, high-frequency vibrations, and high humidity. [1] Lockheed Martin Missiles and Fire Control, therefore, uses nuclear batteries to power the anti-tamper system under harsh conditions and prolonged usage. [1]

 

Radioactive Thermoelectric Generator (RTG)

Radioactive Thermoelectric Generator uses heat generated spontaneously from radioactive substances. The technology requires a large space to capture escaping heat inside semiconductors effectively. The shortcomings of RTG technology are its poor efficiency of 6%, its low power density, and its large size. [2]

NASA calls their technology Multi-Mission Radioisotope Thermoelectric Generator (MMRTG), and in 2016, NASA announced the next generation Enhanced Multi-Mission Radioisotope Thermoelectric Generator (eMMRTG). As Fig. 1 illustrates, eMMRTG improves the original MMRTG with a new thermoelectric technology called Thermoelectric Couple Assembly. eMMRTG's improved efficiency will also help NASA save plutonium which is in extreme shortage in the United States.

Betavoltaic Cells

Betavoltaic cells, also known as betavoltaic devices, are a nuclear battery technology used in small devices that cannot use Radioactive Thermoelectric Generators. Betavoltaic cells utilize beta-decay of isotopes such as tritium. Tritium is a byproduct of nuclear power plants, so manufacturing betavoltaic cells with tritium is an excellent way to turn nuclear wastes into useful goods. [3] The shortcoming of betavoltaic cells in, comparison to chemical batteries, is the low power output. According to Jonathane Greene, the CEO of Widetronix which manufactures betavoltaic cells, a package that is one centimeter-squared wide and two-tenths of a centimeter tall generates one microwatt of power. [1] In comparison, a smartphone using 50% CPU, Wi-Fi connection, and white display will use 1857 mW, so a nuclear battery is not suitable for consumer electronics. [4]

Aqueous Nuclear Battery

Baek Hyun Kim and Jae Won Kwon at University of Missouri published a paper in 2014 proposing one possible next generation nuclear battery technology. Aqueous Nuclear Battery, which is also known as water-based nuclear battery, uses liquid medium for radiolysis, absorbing the kinetic energy of beta particles which is lost in betavoltaic cells. In Kim and Kwon's design using nanoporous titanium dioxide semiconductors coated in platinum, a high efficiency of 53.88% was reached at a potential of 0.9 volts. [5] Using an aqueous solution for radiolytic energy conversion results in higher energy level and lower temperature than using a solid state material does.

Diamond Nuclear Battery

The University of Bristol posted a press release in 2016 introducing another possible next generation nuclear battery technology using carbon isotopes in the form of diamonds. Nuclear power generation produces radioactive waste that cannot be easily disposed. In United Kingdom alone, 95,000 tons of radioactive C-14 are deposited and decaying. Researchers at the University of Bristol discovered a way to heat and gasify the radioactive C-14 concentration on the surface of deposited nuclear graphite wastes, and condense the gas into artificial diamonds. A man-made diamond generates an electric current when placed in a radiation field, and a diamond made of C-14 produces a radioactive field spontaneously. Hence, the diamond battery can create a constant electric current as long as it remains radioactive. Although C-14 can deliver only 15 joules per gram (compared to 700 joules per gram of standard alkaline battery), the C-14 diamond battery can generate power for 7746 years before reaching 50% charge (compared to a single day usage of standard alkaline battery). The C-14 diamond can be encapsulated in a non-radioactive diamond shell which will block all radiation and protect the battery under harsh conditions. [6] The resulting battery is made of the hardest material on Earth, so the industry might finally overcome the psychological resistance of sensitive clients such as patients using IMDs.

Conclusion

Nuclear batteries remain impractically expensive and slow to power consumer products. Furthermore, an essential ingredient of nuclear batteries is the waste from nuclear power plants, so the nuclear battery industry depends on that of the nuclear power plant. However, new technologies that allow for smaller, safer, more efficient, and longer-lasting nuclear batteries suggest a bright future for nuclear battery products in above-stated niche markets. When the cost of manufacturing nuclear batteries decreases, low-power internet-of-things devices could also be powered cord-free for thousands of years with a single charge using this revolutionary technology one day.

© Junwon Park. The author grants permission to copy, distribute and display this work in unaltered form, with attribution to the author, for noncommercial purposes only. All other rights, including commercial rights, are reserved to the author.

References

[1] K. Bourzac, "A 25-Year Battery," Technology Review, 17 Nov 09.

[2] M. A. Prelas et al., "A Review of Nuclear Batteries," Prog. Nucl. Energ., 75, 117 (2014).

[3] V. M. Efremenkov, "Radioactive Waste Management at Nuclear Power Plants," IAEA Bulletin, March 1989, p. 37.

[4] B. A. Naik and R. K. Chavan, "Optimization of Power Usage of Smartphones," Int. J. Comput. Appl. 119, 7 (2015).

[5] B.H. Kim and J. W. Kwon, "Plasmon-Assisted Radiolytic Energy Conversion in Aqueous Solutions," Sci. Rep. 4, 5249 (2014).

[6] D.T. Connor, P. G. Martin, T. B. Scott, "Airborne Radiation Mapping: Overview and Application of Current and Future Aerial Systems," Int. J. Remote Sens. 37, 5953 (2016).

This image, video or audio may be copyrighted. It is used for educational purposes only. If you find it, please notify us byand we will remove it immediately.
第四代反應堆 第四代反应堆
Bei den Reaktoren der vierten Generation (englisch: Generation IV reactors, Abkürzung: Gen IV) handelt es sich um eine Reihe theoretischer Reaktorkonzepte, die im Hinblick auf die nachhaltige Nutzung der Kernenergie, die Wirtschaftlichkeit, die Sicherheit und Zuverlässigkeit sowie die Verbreitungssicherheit und den physischen Schutz untersucht werden.

第四代反应炉(英语:Generation IV reactors,缩写:Gen IV)是一系列研究中的理论反应炉设计,其设计特征为:核能的可持续利用、经济性、安全与可靠性及防扩散与实物保护。

除了BN-1200反应炉,多数方案被认为在2030-2040年前不可能付诸商业运转,高温气冷堆技术方案的石岛湾核电站预计2017年并网发电,拖延至2021年并网发电。目前商转中的反应炉大多是第二代反应炉、以及只有十几个第三代反应炉(2014年),绝大部分的第一代系统已退役。

Bei den Reaktoren der vierten Generation (englisch: Generation IV reactors, Abkürzung: Gen IV) handelt es sich um eine Reihe theoretischer Reaktorkonzepte, die im Hinblick auf die nachhaltige Nutzung der Kernenergie, die Wirtschaftlichkeit, die Sicherheit und Zuverlässigkeit sowie die Verbreitungssicherheit und den physischen Schutz untersucht werden.

Mit Ausnahme des BN-1200-Reaktors wird davon ausgegangen, dass die meisten Optionen nicht vor 2030-2040 kommerziell genutzt werden können, wobei der Netzanschluss des Kernkraftwerks Shidao Bay für die Option der gasgekühlten Hochtemperaturreaktortechnologie für 2017 erwartet wird und sich bis 2021 verzögert. Bei den meisten Reaktoren, die sich derzeit in der kommerziellen Umrüstung befinden, handelt es sich um Reaktoren der Generation II sowie um nur ein Dutzend Reaktoren der Generation III (2014), während die überwiegende Mehrheit der Systeme der Generation I bereits stillgelegt wurde.

Summary of designs for Gen IV reactors[44]
Type Neutron Spectrum Coolant Temperature (°C) Fuel Cycle Size (MW) Example developers
VHTR Thermal Helium 900–1000 Open 250–300 JAEA (HTTR), Tsinghua University (HTR-10), Tsinghua University & China Nuclear Engineering Corporation (HTR-PM),[45] X-energy[46]
SFR Fast Sodium 550 Closed 30–150, 300–1500, 1000–2000 TerraPower (NatriumTWR), Toshiba (4S), GE Hitachi Nuclear Energy (PRISM), OKBM Afrikantov (BN-1200), China National Nuclear Corporation (CNNC) (CFR-600),[47] Indira Gandhi Centre for Atomic Research (Prototype Fast Breeder Reactor)
SCWR Thermal or fast Water 510–625 Open or closed 300–700, 1000–1500  
GFR Fast Helium 850 Closed 1200 Energy Multiplier Module
LFR Fast Lead 480–800 Closed 20–180, 300–1200, 600–1000 BREST-OD-300MYRRHASEALER[48]
MSR Fast or thermal Fluoride or chloride salts 700–800 Closed 250–1000 Seaborg TechnologiesTerraPower, Elysium Industries, Moltex Energy, Flibe Energy (LFTR), Copenhagen Atomics, Thorium Tech Solution (FUJI MSR), Terrestrial Energy (IMSR), Southern Company,[46] ThorCon
This image, video or audio may be copyrighted. It is used for educational purposes only. If you find it, please notify us byand we will remove it immediately.
三门核电站
核电站 反应堆类型 PWR 反应堆供应商 西屋电气公司 发电概况 装机机组 2 × 1157 MW 厂牌和型号 西屋电气公司 AP1000 计划建设机组 4 × 1157 MW 热容量 2 × 3400 MWth 额定容量 2314 三门核电站位于中华人民共和国浙江省台州市三门县猫头山。电站采用AP1000三代压水堆核电技术,规划建设6台125万千瓦的核电机组,总装机容量750万千瓦,总投资超过1000亿元。电站第一和第二单元破土动工在2008年2月26日隆重举行。三门核电站将成为第一个实现由西屋电气公司开发的AP1000压水堆(PWR)。合同约定在2007年7月。[3]第一对反应堆将耗资超过400亿元人民币(约合$58.8亿美元)。三门核电站是中美两国最大的能源合作项目,也是浙江省有史以来投资最大的单项工程。持有单位 中国核工业集团
This image, video or audio may be copyrighted. It is used for educational purposes only. If you find it, please notify us byand we will remove it immediately.
石島灣核電站 石岛湾核电站/Shidao Bay Nuclear Power Plant
启用日期 2021 石岛湾核电站是一座位于中国山东省荣成市的核电站,由“石岛湾高温气冷堆核电站示范工程”及“石岛湾CAP1400核电示范工程”组成,包含多台功率不一的第四代反应堆和最先进的第三代反应堆,充分累积核电站国产建造经验,总投资约1000亿元人民币。 运营单位 华能山东石岛湾核电有限公司 国核示范电站有限责任公司 反应堆类型 高温气冷堆 (HTR-200、HTR-1000) 压水反应堆 (AP1000、CAP1400) 装机机组 1 × 200 MW 计划建设机组 1 × 1000 MW 4 × 1250 MW 1 × 1400 MW 1 × 1700 MW

This image, video or audio may be copyrighted. It is used for educational purposes only. If you find it, please notify us byand we will remove it immediately.
南德克萨斯工程核电站
Eigentümer NRG South Texas Betreiber STP Nuclear Operating Company (STPNOC) Projektbeginn 1971 Kommerzieller Betrieb 25. Aug. 1988 Aktive Reaktoren (Brutto) 2 (2.708 MW) Eingespeiste Energie seit Inbetriebnahme 289.466 GWh
This image, video or audio may be copyrighted. It is used for educational purposes only. If you find it, please notify us byand we will remove it immediately.