Deutsch-Chinesische Enzyklopädie, 德汉百科

       
Deutsch — Chinesisch
IT-Times ComputeralgebrasystemundMathematik

代数/代数学
Dieses Bild, Video oder Audio ist eventuell urheberrechtlich geschützt. Es wird nur für Bildungszwecke genutzt. Wenn Sie es finden, benachrichtigen Sie uns bitte per und wir werden es sofort entfernen.
数学分析/分析/解析/Mathematical analysis
Die Analysis [aˈnaːlyzɪs] (ανάλυσις análysis ‚Auflösung‘, ἀναλύειν analýein ‚auflösen‘) ist ein Teilgebiet der Mathematik. Als eigenständiges Teilgebiet der Mathematik existiert die Analysis seit Leonhard Euler (18. Jahrhundert). Seither ist sie die Mathematik der Natur- und Ingenieurwissenschaften.

数学分析学,也称分析数学分析学解析学(英语:Mathematical Analysis),是普遍存在于大学数学专业的一门基础课程。大致与非数学专业学生所学的高等数学课程内容相近,但内容更加深入,一般指以微积分学无穷级数解析函数等的一般理论为主要内容,并包括它们的理论基础[注 1]的一个较为完整的数学学科。[1]

数学分析研究的内容包括实数复数实函数复变函数。数学分析是由微积分演进而来,在微积分发展至现代阶段中,从应用中的方法总结升华为一类综合性分析方法,且初等微积分中也包括许多数学分析的基础概念及技巧,可以认为这些应用方法是高等微积分生成的前提。数学分析的方式和其几何有关,不过只要任一数学空间有定义邻域拓扑空间)或是有针对两对象距离的定义(度量空间),就可以用数学分析的方式进行分析。

Die Analysis [aˈnaːlyzɪs] (ανάλυσις análysis ‚Auflösung‘, ἀναλύειν analýein ‚auflösen‘) ist ein Teilgebiet der Mathematik. Als eigenständiges Teilgebiet der Mathematik existiert die Analysis seit Leonhard Euler (18. Jahrhundert). Seither ist sie die Mathematik der Natur- und Ingenieurwissenschaften.

Ihre Grundlagen wurden im 17. Jahrhundert von Gottfried Wilhelm Leibniz und Isaac Newton als Infinitesimalrechnung unabhängig voneinander entwickelt. Infinitesimalrechnung ist die mathematische Untersuchung kontinuierlicher Veränderungen, so wie Geometrie die Untersuchung der Form und Algebra die Untersuchung der Verallgemeinerung arithmetischer Operationen ist.

Zentrale Begriffe der Analysis sind die des Grenzwerts, der Folge, der Reihe sowie in besonderem Maße der Begriff der Funktion. Die Untersuchung von reellen und komplexen Funktionen hinsichtlich StetigkeitDifferenzierbarkeit und Integrierbarkeit zählt zu den Hauptgegenständen der Analysis. Grundlegend für die gesamte Analysis sind die beiden Körper  (der Körper der reellen Zahlen) und  (der Körper der komplexen Zahlen) mitsamt deren geometrischen, arithmetischen, algebraischen und topologischen Eigenschaften.

Dieses Bild, Video oder Audio ist eventuell urheberrechtlich geschützt. Es wird nur für Bildungszwecke genutzt. Wenn Sie es finden, benachrichtigen Sie uns bitte per und wir werden es sofort entfernen.
应用数学/Applied mathematics
Dieses Bild, Video oder Audio ist eventuell urheberrechtlich geschützt. Es wird nur für Bildungszwecke genutzt. Wenn Sie es finden, benachrichtigen Sie uns bitte per und wir werden es sofort entfernen.
计算数学/Computational Mathematics
Dieses Bild, Video oder Audio ist eventuell urheberrechtlich geschützt. Es wird nur für Bildungszwecke genutzt. Wenn Sie es finden, benachrichtigen Sie uns bitte per und wir werden es sofort entfernen.
几何/几何学/几何图形/几何形状/几何结构/geometry
Dieses Bild, Video oder Audio ist eventuell urheberrechtlich geschützt. Es wird nur für Bildungszwecke genutzt. Wenn Sie es finden, benachrichtigen Sie uns bitte per und wir werden es sofort entfernen.
图论/Graph theory
Dieses Bild, Video oder Audio ist eventuell urheberrechtlich geschützt. Es wird nur für Bildungszwecke genutzt. Wenn Sie es finden, benachrichtigen Sie uns bitte per und wir werden es sofort entfernen.
組合數學 组合数学/组合分析/Combinatorics/离散数学
Die Kombinatorik ist eine Teildisziplin der Mathematik, die sich mit endlichen oder abzählbar unendlichen diskreten Strukturen beschäftigt und deshalb auch dem Oberbegriff Diskrete Mathematik zugerechnet wird.

广义的组合数学(英语:Combinatorics)相当于离散数学,狭义的组合数学组合计数图论代数结构数理逻辑等的总称。但这只是不同学者在叫法上的区别。总之,组合数学是一门研究可数或离散对象的科学。随着计算机科学日益发展,组合数学的重要性也日渐凸显,因为计算机科学的核心内容是使用算法处理离散数据

狭义的组合数学主要研究满足一定条件的组态(也称组合模型)的存在、计数以及构造等方面的问题。组合数学的主要内容有组合计数组合设计(Combinatorial design)、组合矩阵(Combinatorial matrix theory)、组合最佳化最佳组合)等。

Die Kombinatorik ist eine Teildisziplin der Mathematik, die sich mit endlichen oder abzählbar unendlichen diskreten Strukturen beschäftigt und deshalb auch dem Oberbegriff Diskrete Mathematik zugerechnet wird. Beispiele sind Graphen (Graphentheorie), teilgeordnete Mengen wie VerbändeMatroide, kombinatorische Designslateinische QuadrateParkettierungenPermutationen von Objekten, Partitionen. Die Abgrenzung zu anderen Teilgebieten der Diskreten Mathematik ist fließend. Eine Definition von George Pólya bezeichnet die Kombinatorik als Untersuchung des Abzählens, der Existenz und Konstruktion von Konfigurationen.[1]

Je nach den verwendeten Methoden und Gegenständen unterscheidet man auch Teildisziplinen wie algebraische Kombinatorik, analytische Kombinatorik, geometrische und topologische Kombinatorik, probabilistische Kombinatorik, Kombinatorische SpieltheorieRamseytheorie. Speziell mit der Optimierung diskreter Strukturen beschäftigt sich die kombinatorische Optimierung.

Dieses Bild, Video oder Audio ist eventuell urheberrechtlich geschützt. Es wird nur für Bildungszwecke genutzt. Wenn Sie es finden, benachrichtigen Sie uns bitte per und wir werden es sofort entfernen.
Dieses Bild, Video oder Audio ist eventuell urheberrechtlich geschützt. Es wird nur für Bildungszwecke genutzt. Wenn Sie es finden, benachrichtigen Sie uns bitte per und wir werden es sofort entfernen.
Wolfram Mathematica
Dieses Bild, Video oder Audio ist eventuell urheberrechtlich geschützt. Es wird nur für Bildungszwecke genutzt. Wenn Sie es finden, benachrichtigen Sie uns bitte per und wir werden es sofort entfernen.
集合论/Set theory
Dieses Bild, Video oder Audio ist eventuell urheberrechtlich geschützt. Es wird nur für Bildungszwecke genutzt. Wenn Sie es finden, benachrichtigen Sie uns bitte per und wir werden es sofort entfernen.
Dieses Bild, Video oder Audio ist eventuell urheberrechtlich geschützt. Es wird nur für Bildungszwecke genutzt. Wenn Sie es finden, benachrichtigen Sie uns bitte per und wir werden es sofort entfernen.
统计学/统计/统计表/统计法/Statistics
Dieses Bild, Video oder Audio ist eventuell urheberrechtlich geschützt. Es wird nur für Bildungszwecke genutzt. Wenn Sie es finden, benachrichtigen Sie uns bitte per und wir werden es sofort entfernen.